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Abstract 

There has been a growing emphasis on remanufacturing as a profitable means to reduce 

wastage, conserve energy and costs. An alternate approach to obtain similar environmental 

and economic benefits is to increase the product life. We model and analyze the economic 

relationships among the level of remanufacturing, product life and economic consequences 

under the framework of a manufacturer/remanufacturer and a service provider who utilizes 

the manufacturer’s product to provide service to his/her customers. In our framework, the 

remanufacturability is defined as the fraction of used products that can be economically 

remanufactured, and it is assumed that the remanufacturability can be increased via fixed cost 

investment in product and process design technologies. We also assume that the product life 

which is defined to be the number of units of service that is provided from the product can be 

increased by utilizing higher quality components with corresponding higher variable cost. 

Under these assumptions, we formulate three distinct supply chain scenarios. Namely, a 

manufacturer driven supply chain, a centrally coordinated supply chain and a service 

provider driven supply chain. From the subsequent equilibrium and optimality analysis, we 

derive several interesting managerial insights. For example, there are several conditions 

under which a higher technology investment in remanufacturability leads to a shorter product 

life. 
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 1. Introduction 

1.1 Research Objectives and Overview 

There has been a growing emphasis on remanufacturing as a profitable means to reduce 

waste conserve energy and save costs. Lund [1] defines remanufacturing as an industrial 

process in which worn-out products are restored to a like-new condition.  In 2004, Xerox a 

copy machine manufacturer claimed to have saved 320 000 megawatts of energy and 

diverted more than 120 million pounds of material from the land fill via remanufacturing [2]. 

A key characteristic of remanufacturing environments is remanufacturability defined as the 

fraction of returned products that can be economically remanufactured [3]. The 

remanufacturability may be improved via investment in product and process design [3, 4].   

An alternative approach to obtain similar environmental and economic benefits is to increase 

the product life. By product life, we mean the number of units of service provided by the 

product.  The environmental protection agency recommends both a longer product life and 

product reuse to reduce wastage [5]. The product life may be extended by utilizing higher 

quality components that result in a greater variable cost [6]. The environmental protection 

agency recommends both a longer product life and product reuse to reduce wastage [5].   

The purpose of this study is to model and analyze the economic relationships among the level 

of remanufacturing product life and economic consequences under the framework of a   

manufacturer/remanufacturer and a service provider who utilizes the manufacturer’s product 

to provide service to her customers.  

The specific research objectives are,  
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1)  To derive the relationships between the remanufacturability and product life in the 

context of a manufacturer-service provider supply chain. 

2)  To investigate how supply chain coordination between the manufacturer and 

service provider impacts the remanufacturability, product life, profits and prices. 

3)  To analyze the impact of an environmental legislation that penalizes disposal of 

products with respect to the level of remanufacturing and product life. 

Supply chains with both forward and reverse flows of product are referred to as closed loop 

supply chains. Savaskan [7] compared various closed loop supply chains structures where 

goods are sold to the customers and the product returns are driven by collection efforts.  

Another closed loop supply chain that is gaining relevance in the recent years is where 

services are sold to customers instead of goods.   

Several remanufacturable products are being utilized to provide service to the customers. For 

example, copy machines are utilized by document centers such as Kinko’s and Staples. 

Automotive transmission flush machines, commercial truck tires, washing machines and 

fitness equipment are all examples of remanufactured products being utilized to provide 

service to the customers.  Electrolux a washing machine manufacturer/remanufacturer 

conducted a pilot project in Sweden to offer laundry service on a contract with about 1 dollar 

per laundry for 1000 washes as an alternative to selling the equipment [8].   

Several articles suggest that the service selling supply chain where services, instead of goods, 

are sold to the customers promotes both product life as well as the level of remanufacturing 

[6, 9].  Stahel [10] argues that, selling of services places the emphasis on meeting the demand 
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for those services in the most cost effective manner and hence leads to a greater product life 

and product reuse compared to the traditional selling of goods.  A key difference between 

service selling supply chain and the traditional supply chain is the collection efforts required 

for the return of used products.  In case of service selling, manufacturers often lease the 

products to service providers who return without cost when the lease expires (e.g, Xerox 

copy machines and Pitney Bowes mail processing machines). In contrast, collection efforts 

such as advertisements, collection centers, and return fees may be required to get back 

products sold to individual customers.  

We investigate the impact of supply chain coordination on the remanufacturability, prices 

and product life under a game theoretic framework. For this study, we focused on the 

decentralized model where the manufacturer is assumed to possess the supply chain power 

over the service provider as our basic model. The assumption of a dominant manufacturer is 

frequently observed in the supply chain literature and is based on belief that downstream 

supply chain members such as retailers and service providers are often smaller in size and 

operate in specific local markets [11, 12]. We formulated this supply chain as a Stackelberg 

game with the manufacturer as the leader.  The Stackelberg game is appropriate for modeling 

a dominant supply chain member as it typically results in higher profits to the leader due to 

the advantage of choosing his/her strategies first [11-14].  

1.2   Enhancing Remanufacturability via Technology Investment 

An important feature of our model is the option for the manufacturer to invest in 

remanufacturability, the fraction of products that may be economically remanufactured (in 

this paper, we will use the terms remanufacturability and the level of remanufacturability (R) 
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interchangeably).  By an economically remanufactured product, we mean that a specified 

amount of cost saving is achieved over the cost of manufacturing.  The justification for such 

an investment in remanufacturing is three fold. 

1) Design for remanufacturing: This involves improving the product design so as to 

facilitate the various steps involved in the remanufacturing process such as disassembly, 

product testing, cleaning, and reassembly. A product that is modular in design, easy to 

disassemble and reassemble may have a greater chance of being economically 

remanufactured as compared to product which is too expensive to disassemble. The various 

aspects of design for remanufacturing are discussed in Amezquita et al [3].  

2) Improved remanufacturing process: Investment in remanufacturing equipment and 

processes may facilitate the remanufacturing of product subassemblies that are too difficult 

or expensive to remanufacture.  Sundin [15] studied remanufacturing process of several 

companies and found that cleaning and inspection were often the most time consuming steps 

of the remanufacturing process. Automation of these steps was recommended to reduce the 

processing time. Recently Xerox replaced its traditional cleaning technology with carbon 

dioxide blasting which lead to reduced cleaning times as well as improved part recovery rates 

[16].  

3) Improved Used Product Testing: Improved product testing enables the cost efficient 

identification of the remaining life of a product and will thus help in remanufacturing the 

product economically. For instance, Xerox has invested in the development of an advanced 

testing technology called signature analysis that facilitates the assessment of the remaining 

life of the used products as well as to remanufacture efficiently. The technology compares 
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the noise, heat and vibration levels of the used parts with the characteristics of the new parts 

to assess the condition of the used parts.  The company claims that the technology has saved 

used parts with remaining life from being discarded based on the average performance[2].   

 

Debo et al [10] consider similar fixed cost investment in remanufacturing.  In what follows, 

we will discuss how the product life can be varied by utilizing better quality components 

resulting in higher variable cost. 

1.3 Variable Product Life 

Products in general are composed of multiple components that vary with respect to their 

component life.  By component life, we mean the number of units of service that a 

component can provide before being worn out.  For instance, moving parts in a copy machine 

such as bushings tend to wear out faster per unit service compared to the electronic 

components such as memory chips [6]. The product life ends when the shortest life 

component wears out.  Under the circumstances, the product life can be increased by 

replacing relatively shortest life components with those having a higher component life. Fuji 

Xerox [17] utilized bushings with better thermal and frictional properties to extend product 

life. We consider that replacing the short life components with longer life components results 

in a higher variable cost [18, 19]. While we focus on the case where product life is increased 

by utilizing longer life components, the product life may also be improved technology 

investments in a more robust design.   
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1.4   Environmental Fee Based on a Type of E-Waste Legislation 

As part of this study we also examined how a specific type of environmental legislation that 

is aimed at reducing the waste impacts the remanufacturability and product life. Specifically, 

we consider the scenario where the government imposes an environmental fee for each 

product that is disposed into the waste stream. The fee σ can be utilized for various purposes 

such as recycling, environmental disposal and consumer education.  This fee structure is 

influenced by the recent e-waste legislation in Maine where the producers pay for recycling 

of their products  in details [20]. 

1.5   Service Provider Driven Supply Chain  

In recent years, the service provider driven supply chain (SPDSC) has gained relevance as 

service providers are becoming increasingly powerful by organization of multiple service 

centers into service provider chains.  For example, large service provider chains such as 

Fedex Kinkos and Staples are likely to have a considerably high supply chain power. 

Although retailers and service providers are becoming more dominant relative to the 

manufacturer, only a small minority of papers in the supply chain literature have considered a 

dominant downstream supply chain member [12, 13, 21]. We formulate SPDSC as a 

Stakcelberg game based upon service provider’s margin as a benchmark and compare with 

the equilibrium solution of MDSC. 

Our results show that there is a tradeoff between product life and remanufacturability and 

that parameters that are leading to a higher remanufacturability are also resulting in a lower 

product life.  We also found that the decentralized manufacturer driven supply chain has a 

lower remanufacturability and a longer product life compared to the centrally coordinated 
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supply chain. When product life is constant, we found that an environmental fee penalizing 

product disposal can lead to decreased remanufacturing and a higher price depending on the 

parameters. Finally, given constant product life we found the service provider driven supply 

chain to be superior to the manufacturer driven supply chain with respect to 

remanufacturability and price. 

Given this overview, the rest of the paper is organized as follows. In Chapter 2, we review 

the relevant literature in vertical supply chains, remanufacturing and product life extension. 

Next in Chapter 3, we formulate the manufacturer driven supply chain MDSC with 

investments in remanufacturability and constant product life as a Stackelberg game and 

determine the equilibrium conditions. In addition, we compare the MDSC equilibrium with 

the centrally coordinated supply chain CCSC optimal solution as benchmark. Next, in 

Chapter 4, we extend MDSC to consider investment in remanufacturability as well as a 

variable product life and compare with the corresponding CCSC optimal solution. Next in 

Chapter 5, we analyze how an environmental fee imposed on each disposed product impacts 

the MDSC equilibrium. In Chapter 6, we consider the case when the service provider 

possesses the supply chain power as a Stackelberg game and compare with CCSC and 

MDSC.   Finally, we provide concluding remarks and directions for further study in Chapter 

8. 
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2.  Literature Review 

This research is associated with three streams of literature which address remanufacturing, 

variable product life and vertical supply chain. In what follows, we first discuss the 

remanufacturing literature followed by the product life and vertical supply chain literature.    

Traditionally, the remanufacturing literature focused on tactical and operational issues such 

as optimizing the inventory levels and disassembly sequences of returned products[22, 23].   

Recently, there has been a shift in emphasis towards the strategic issues such as the level of 

technology investments, pricing of new and remanufactured products, competition with 

independent remanufacturers etc.  Production cost savings over the cost of manufacturing a 

new product is a key economic drivers of remanufacturing [24]. Given that remanufacturing 

requires fixed cost technology investments, the profitability of remanufacturing can depend 

on the volume of used products over which the production cost savings can be realized. Debo 

et al [4] investigated the economic drivers behind remanufacturing when the remanufactured 

product is perceived to be of a lesser quality then the new product.  Similar to our model, 

they consider that remanufacturability can be improved via investments in process and 

product design technologies. They found that the profitability of remanufacturing depended 

on the production cost savings, the market size and the market heterogeneity.   

Given that closed loop supply chains have both forward and reverse flows, the supply chain 

interactions with intermediaries such as retailers, and third-party collectors can have a 

significant impact on the degree of remanufacturing. Savaskan et al [7] analyze the impact of 

supply chain configurations and gaming behavior between the members on the investment in 



www.manaraa.com

9 

 

collection effort when products are sold to the customers.  Utilizing a linear demand and 

quadratic investment function for collection effort they discuss how the lack of supply chain 

coordination can result in lower investment in remanufacturability. We similarly consider 

that fixed cost investments can improve the fraction of products that are remanufactured.  

However, we focus on a service selling framework, variable product life and more general 

investment functions. 

We will now review the relevant articles on a variable product life. Several articles analyzed 

the impact of durability from an economic perspective.  In these models, the durability is 

often modeled as a function of the variable cost of manufacturing. Levhari and Srinivasan 

[18] compare the durability under monopoly and perfect competition when the durable goods 

are utilized to provide service. They formulate a discounted profit model with constant 

production quantity in each period and conclude that durability would be lesser under 

monopoly as compared to competition.  Swan[16] contends that the  Levhari and Srinivasan 

[17]’s model has a specification error and that the choice of durability is based on 

minimizing the cost of providing a given flow of services and is independent of the demand 

and revenue conditions. Swan concludes that the monopolist will have the same durability as 

under competition while producing a lower quantity of goods and charging higher per unit 

service.  Similar to the Swan [16]  model, the optimal product life given the 

remanufacturability is independent of the demand parameters except for their indirect effect 

via the remanufacturability in our model. 

A central concept in the pricing models of vertical supply chain is the phenomenon of double 

marginalization. Double marginalization refers to the loss of profits and higher retail price in 
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a decentralized supply chain because of two successive mark-ups. Double marginalization 

occurs because the retailer does not take manufacturer’s profit into account while setting his 

retail price  [25].  The double marginalization in vertical supply chains is similar to the 

classical prisoner’s dilemma in game theory and may result in decreased quality of goods in 

addition to the increased prices [26]. Considering the double marginalization, distributing via 

a company owned store is more profitable than utilizing supply chain intermediaries such as 

retailers when the supply chain is a monopoly (often referred to as bilateral monopoly in the 

supply chain literature). When competition is considered, as shown by Mcguire and Staelin 

[11],  utilizing supply chain intermediaries can be more profitable compared to a company 

owned store as the intermediaries act as a buffer to reduce the extent of competition between 

two manufacturers. However, the price to the customers is higher than in a coordinated 

supply chain in competition as well. 

The decreased demand in decentralized supply chains due to double marginalization can 

result in reduced incentive for production cost saving technology investment. Gupta and 

Loulou [27] further extend Mcguire and Staelin [11] model to consider production cost 

saving technology investment. They assume a linear demand function and a quadratic 

investment function relating the production cost savings to the technology investment. Under 

the circumstances, they show that double marginalization in an uncoordinated supply chain 

results in lower technology investment regardless of the product substitutability.  In our 

model, a specified production cost savings is achieved over the manufacturing cost per every 

remanufactured product.  The manufacturer driven supply chain (MDSC) in our model is 

closely related Gupta and Loulou’s model in that technology investment can lead to reduced 
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average production cost per product in both the models.   We extend Gupta and Loulou’s 

model in the following aspects: 1) our results are applicable for a more general class of 

investment functions. 2) we consider the case when product life is variable in addition to the 

fixed cost investments in remanufacturability 3) we analyze the impact of an environmental 

fee imposed on each disposed product 4) We formulate the service provider driven supply 

chain (SPDSC) as an important benchmark and perform comparative analysis. 
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3.  The Manufacturer Driven Supply Chain (MDSC) 

In this chapter, we formulate and analyze a decentralized model of the manufacturer service 

provider supply chain assuming that the manufacturer possesses a greater supply chain power 

over the service provider. The assumption of a dominant manufacturer is frequently observed 

in the supply chain literature and is based on belief that downstream supply chain members 

such as retailers and service providers are often smaller in size and operate in specific local 

markets [11, 12].  Considering this assumption, MDSC is more relevant for the case of small 

and independent service providers. We formulate this supply chain as a Stackelberg game 

with the manufacturer as the leader.  The Stackelberg game is appropriate for modeling a 

dominant supply chain member as it typically results in a monetary advantage  to the leader 

due to choosing his/her strategies first [13, 16, 28].    

We perform comparative statics to analyze how various parameters impact the equilibrium 

remanufacturability and the price in the above Stackelberg game. Such analysis is useful in 

identifying conditions under which a greater investment in remanufacturability is justified.  

We also compare MDSC equilibrium with centrally coordinated supply chain (CCSC) as a 

benchmark to analyze how the double marginalization in MDSC impacts the optimal prices 

and remanufacturability.   

The chapter is organized as follows. In Section 3.1, we define notations, provide an overview 

of MDSC and discuss our assumptions. Next in Section 3.2, we formulate MDSC as a 

Stackelberg game and derive the equilibrium conditions.  Next in Section 3.3, we analyze the 

sensitivity of the equilibrium with respect to key parameters. Next in Section 3.4, we 

compare MDSC equilibrium with CCSC solution as a benchmark. Finally in Section 3.5, we 
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utilize a specific quadratic investment function to illustrate the analytical results and make 

further observations. The notations utilized in this paper are summarized in Appendix A. The 

results for the forward supply chain where remanufacturing is not modeled are provided in 

Appendix B for comparison. 

 3.1. Description of the Supply chain and Assumptions 

The MDSC is shown in Figure 1. The MDSC consists of a manufacturer who manufactures 

as well as remanufactures his products and a service provider who in turn utilizes the 

manufacturer’s products to provide service to her customers. The service provider charges a 

price p per unit service. By a unit of service, we mean a quantifiable measure of service for 

which the service provider charges a fixed price. For example, a single copy or a load of 

clothes in a laundry are both units of service. Given p, the service provider faces a demand of 

D(p)=β-γp, 0<p < β/γ units of service  where   > 0 is the maximum demand for services and 

  > 0 is the marginal demand and denotes the decrease in demand for a unit increase in price 

p (step 1 in Figure1). Linear demand functions have been widely utilized in supply chain 

literature [7, 11, 21, 29]. While the linear demand assumption enables us to identify and 

characterize the key supply chain phenomena, further study is required to generalize the 

results to a wider class of functions. 

We consider that each product provides α, α > 0 units of service from its manufacture / 

remanufacture to when it is collected as a used product for possible remanufacturing. The 

parameter α (units of service/product) represents the product life e.g., the number of copies 

provided by a copier in its life.  Hence, to meet the demand D(p),  the service provider 
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requires D(p)/α products which she purchases from the manufacturer at a wholesale w (step 2 

in Figure 1). 

We assume that the service provider returns all of the D(p)/α products at the end of use at no 

cost to the manufacturer (Step 3 in Figure 1). The justification for this assumption is twofold: 

1) leased products such as copy machines (manufactured by Xerox), mail processing 

equipment (manufactured by Pitney – Bowes) are often returned to the manufacturer without 

an additional cost at the end of lease; 2) mathematically, two separate prices for sale of new 

products and return of used products can equivalently be represented by a single price as long 

as all the products are returned regardless of price.  To elaborate, suppose that the forward 

wholesale price per product is w1 and the manufacturer paid a collection fee A per every 

returned product.  The service provider’s profit would then be D(p) 𝑝 − 𝑤1 𝛼 + 𝐴 𝛼  .  In 

this case, combining the two prices w1 and A into a single wholesale price w will result in an 

equivalent profit maximization problem for the service provider.   

The manufacturing cost per product is Cm dollars per product while the remanufacturing cost 

per product is Cr.   Given that production cost savings is the primary economic motive for 

remanufacturing in the U.S.A [1], we assume that the remanufacturing cost Cr is less than the 

manufacturing cost Cm  per product by a fixed amount Δ, Δ< Cm .  In practice, it is 

uneconomical to remanufacture all the returned products as they vary in their condition. We 

define remanufacturability R, 0 <R<1 as the fraction of returned products that can be 

economically remanufactured to realize the cost savings Δ.  Under the circumstances, the 

manufacturer remanufactures a fraction R of the D(p)/α returned products  (Step 4 of Figure 

1) and disposes the rest (1-R) D(p)/α products as being unsuitable for remanufacturing(Step 5 
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of Figure 1).  

 

Figure 1 Manufacturer Driven Supply Chain 

 

We consider that the manufacturer can increase the remanufacturability R by investing I(R) 

(dollars) in product design, testing and remanufacturing process technologies. We assume 

that I(R) is a convex and increasing function of R implying that increasing investments are 

required to obtain additional fixed increments in remanufacturability.  Given this overview, 

we will now state the main assumptions of our model. 

Assumption 1:  The planning horizon is a single period representing the effective operation 

period of the remanufacturing technology corresponding to the investment I(R).  The price p, 
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the wholesale price w, and the remanufacturability R are all decided at the start of the single 

period and are held constant thereafter. We note that the cost savings from remanufacturing 

may be less initially until the products manufactured at the start of the period are returned.  

However, the initial portion’s impact will be small if the single period’s length is relatively 

large or if returned products from the previous period are available (i.e., a steady state 

perspective). We utilize the single period model as a basic step to identify the main economic 

implications of jointly optimizing remanufacturability and product life in a vertical supply 

chain and lay the groundwork for more detailed dynamic multi-period models [4, 19].  We 

note other articles in the literature made a similar assumption as well [27, 30]. 

Assumption 2:  No difference between the quality of the manufactured and the 

remanufactured products.  The validity of this assumption depends on the nature of the 

product. For instance, while the assumption may be reasonable for products such as copy 

machines that are remanufactured to extremely high standards, remanufactured automobile 

parts are often perceived to be of lesser quality. 

Assumption 3:  the parameters of the model are such that the optimal remanufacturability *R  

satisfies 10 *  R  and the optimal demands and the profits are greater than zero.  We make 

this assumption to focus on the more relevant case of interior and feasible solutions. The 

assumption seems reasonable because in practice unusually high investments might be 

required if every returned product is to be remanufactured.     
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Assumption 4:  the investment function I(R) satisfies𝐼 𝑅 > 𝛾∆2/2𝛼2.  This assumption 

ensures that the total supply chain profits in CCSC and the manufacturer’s profit in MDSC is 

concave with respect to R and p. 

Assumption 5:  the manufacturer and service provider constitute a bilateral monopoly, i.e., 

the manufacturer has a monopoly in the product and the service provider has a monopoly in 

the service offered.  We make this assumption to analyze the impact of the basic supply chain 

interactions and the double marginalization on the remanufacturability. Validating the results 

under competition and alternate supply chain configurations is a relevant area for future 

research. 

3.2 Stackelberg Game Formulation of MDSC 

We model MDSC as a Stackelberg game where the manufacturer is the leader and makes his 

decisions first while the service provider is the follower and makes her decisions later. 

Supply chains with a dominant manufacturer are often modeled as a manufacturer leader 

Stackelberg game since it typically results in higher profits to the leader due to the advantage 

of moving first [13, 16, 28].    

In a Stackelberg game with two players, player 1 first chooses his/her strategy x1 (Stackelberg 

leader) and then player 2 observes this choice and chooses his/her strategy x2.  To determine 

the Stackelberg equilibrium (x1
*

   x2
*
), we first determine player 2’s strategy x2

*
 (x1) that 

maximizes his/her profit for each value of player 1’s strategy.  Here x2
*
 (x1) is called the best 

response function. We then determine the player 1, strategy x1
*

 that maximizes his profits 

π(x1, x2
*
 (x1)) [31].  
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In MDSC, since the service provider is the follower, she accepts the wholesale price per 

product w that is determined by the manufacturer, and in turn determines the price per unit 

service 𝑝(𝑤) that maximizes her profits.  Being the leader, the manufacturer anticipates the 

service provider’s best response function 𝑝(𝑤) and determines the optimal wholesale price 

wm and the remanufacturability Rm that maximize his profit.  In what follows, we will derive 

sufficient conditions for the existence and uniqueness of the Stackelberg equilibrium and 

state the equilibrium conditions.  

To solve the Stackelberg game we first optimize the service provider’s profit 𝜋𝑠𝑝
𝑚  and 

determine her best response function  𝑝(𝑤) to a given w. The service provider’s profit 

maximization given the wholesale price w is formulated by (1). The term  𝛽 − 𝛾𝑝  in (1) is 

the demand for services while (𝑝 −
𝑤

𝛼
) is the service provider’s margin per unit service. 

))((



w

ppMax m
sp

p
  (1) 

In the Stackelberg game, concavity of the follower’s objective implies that the best response 

function exists and is a sufficient condition for the existence of the Stackelberg 

equilibrium[31]. From (1),  
𝜕2  𝜋𝑠𝑝

𝑚

𝜕𝑝2 =-2γ <0. Therefore,  𝜋𝑠𝑝
𝑚  is a concave function of the price 

p implying that the service provider’s best response function is single valued. The first order 

condition for maximizing the service provider’s profit is given by (2). 

𝜕𝜋𝑠𝑝
𝑚

𝜕𝑝
= 𝛽 − 2𝛾𝑝 +

𝑤

𝛼
 (2) 

Solving (2) the service provider’s best response function 𝑝(𝑤) is as provided by (3) 
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w
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  (3) 

The next step in solving the Stackelberg game is to determine the w and R that maximize the 

manufacturers profit 𝜋𝑚
𝑚  while considering the service provider’s best response 

function 𝑝 𝑤 . The manufacturer’s profit maximization problem is formulated by (4).  Here, 

the term   𝛽 − 𝛾𝑝(𝑤) /𝛼 is the total number of products while  (𝑤 − 𝐶𝑚 + 𝑅∆) is the 

manufacturer’s margin per product. The fixed cost investment required to achieve a 

remanufacturability of R is represented by 𝐼(𝑅).  

)()(
))((

,
RIRCw

wp
Max m

m
m

Rw








  (4) 

Substituting the service provider’s best response function 𝑝(𝑤)from (3) into (4),  

)()(
2

)(
2,

RIRCw
w

Max m

m

m
Rw










 

(5) 

A sufficient condition for the existence of the Stackelberg equilibrium is the concavity of the 

leader’s objective [31].  From (5), it can be verified that the manufacturer’s profit function 

m

m is concave in w and R if inequality (6) is true. We assume (6) is true to focus on the cases 

where the Stackelberg equilibrium is unique. 

)(
4 2

2

RI 






 
(6) 

The equilibrium price 𝑤𝑚  and mR  are found by equating the first derivatives of the 

manufacturer’s profit (7) and (8) to zero.   
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(8) 

Considering the service provider’s best response function (3), we can express the first order 

condition (8) as given by (9) 

∆(𝛽 − 𝛾𝑝(𝑤))

𝛼
− 𝐼′ 𝑅 = 0 (9) 

Therefore, from (9) the optimal remanufacturability only depends on the optimal demand for 

products  𝛽 − 𝛾𝑝(𝑤) /𝛼  and the cost savings per remanufactured product ∆. This 

dependence of remanufacturability on the demand for products is because investment in 

remanufacturability is a fixed cost.  In what follows, we will briefly discuss the conditions on 

the parameters under which optimal demand for services and the remanufacturability are 

positive. These conditions are useful in comparative statics and other analyses later on.  The 

optimal w can be found by solving the first order condition (7) as shown in (10).  From (9), 

the optimal w is a decreasing function of the optimal remanufacturability. This is intuitive as 

increased remanufacturability implies a decreased average variable cost of manufacturing/ 

remanufacturing per product. 

𝑤𝑚 =
𝛼𝛽 + 𝛾𝐶𝑚 − 𝑅𝑚𝛾∆

2𝛾
 (10) 

From (10) and 𝑝(𝑤) as given by (3), the optimal demand 𝛽 − 𝛾𝑝 𝑤𝑚  is an 

increasing function of Rm as shown by (10).  
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𝛽 − 𝛾𝑝 𝑤𝑚 =
𝛼𝛽 − 𝛾𝐶𝑚 + 𝑅𝑚𝛾∆

4𝛼
 (11) 

From (11), 𝛼𝛽 − 𝛾𝐶𝑚 + 𝑅𝑚𝛾∆ > 0 if the optimal demand is positive. In addition, 

substituting (10) into the first order condition (8), the rate of change of profit with R when 

𝑅 = 0 and w is the optimal w given 𝑅 = 0 is given by (12). 

 

𝜕𝜋𝑚
𝑚

𝜕𝑅
= ∆  

𝛼𝛽 − 𝛾𝐶𝑚
4𝛼2

 − 𝐼′ 0  (12) 

 

Given that 𝜋𝑚
𝑚  is concave, the condition for the optimal remanufacturability Rm to be positive 

is 
𝜕𝜋𝑚

𝑚

𝜕𝑅
> 0 at R = 0.  From (12), the conditions for Rm to be positive are that  𝛼𝛽 > 𝛾𝐶𝑚  and 

(13) is true. 

∆  
𝛼𝛽 − 𝛾𝐶𝑚

4𝛼2
 > 𝐼′(0) (13) 

 

From (13), we observe that conditions leading to a higher demand such as a high β and a low 

γ are necessary for remanufacturing to be profitable.  Given that an investment in 

remanufacturability is a fixed cost, it is intuitive that a higher demand for services and 

products is favorable to remanufacturing.  Also note from Appendix B, that  𝛼𝛽 − 𝛾𝐶𝑚 > 0 

if the optimal demand in the forward only supply chain is positive. 

3.3 Comparative Statics of MDSC Equilibrium  

In this section, we perform comparative statics to analyze how MDSC equilibrium Rm and wm 

vary with respect to key parameters such as γ, ∆, and α.    Given the demand for products, the 
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parameter ∆ signifies the extent of production cost savings via increased remanufacturing. 

Comparative statics with respect to ∆ enables us identify how an increased incentive for 

remanufacturing impacts the optimal product life.  Given the linear demand function 𝐷 𝑝 =

𝛽 − 𝛾𝑝, the marginal demand is 
𝑑𝐷(𝑝)

𝑑𝑝
– = -γ.  Thus increased γ implies that the demand is 

more sensitive to the price and may result in reduced demand for services overall. The 

product life α is inversely related to the number of products required to meet a given demand 

for services. A decrease in the number of products implies that the overall production cost 

savings due to remanufacturing for a given R and ∆ would be less. We utilize the implicit 

function theorem to perform this analysis [32]. 

3.3.1 Comparative Statics with Respect to Marginal Demand 𝜸 

Equation(14) shows  𝐷2𝜋𝑚
𝑚 , the hessian matrix for 𝜋𝑚

𝑚  with respect to w and R.    

𝐷2𝜋𝑚
𝑚 =  

−
𝛾

𝛼2
−

𝛾∆

2𝛼2

−
𝛾∆

2𝛼2
−𝐼′′(𝑅)

  (14) 

The implicit function theorem is applicable if we have an interior equilibrium, i.e., the first 

order conditions are met and  𝐷2𝜋𝑚
𝑚  ≠ 0.  Here,   𝐷2𝜋𝑚

𝑚   denotes the determinant of the 

hessian 𝐷2𝜋𝑚
𝑚 .  From the implicit function theorem, we have, 

 

 
 

𝜕𝑤𝑚

𝜕𝛾
𝜕𝑅𝑚
𝜕𝛾  

 
 

=

 

 

𝜕2𝜋𝑚
𝑚

𝜕𝑤2

𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕𝑅
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝑤

𝜕2𝜋𝑚
𝑚

𝜕𝑅2  

 

−1

 

 
 
−
𝜕2𝜋𝑚

𝑚

𝜕𝑤𝜕𝛾

−
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝛾 

 
 

 

Where, 

(15) 
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𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕𝛾

𝜕2𝜋𝑚
𝑚

𝜕𝑅𝜕𝛾 

 
 

=  

1

2𝛼

−
∆

2𝛼

    (16) 

Substituting the hessian (14) and (16) into (15) and simplifying,  

𝑑𝑅𝑚
𝑑𝛾

= −
∆(𝐶𝑚 − 𝑅∆)

4𝛼2𝐼′′ (𝑅𝑚 ) − 𝛾∆2
 (17) 

Solving (15) and simplifying the resulting the expression by substituting wm from (10) 

is 

 

 

𝑑𝑤𝑚

𝑑𝛾
=

1

2
 −

𝛼𝛽

𝛾2
+

∆2(𝐶𝑚 − 𝑅∆)

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2
  (18) 

From (17) 
𝑑𝑅𝑚

𝑑𝛾
< 0 . This is because increased γ results in a reduced demand for services and 

ultimately a lesser incentive to invest in remanufacturability. The sensitivity with respect to 

𝑤𝑚  depends on the specific parameter values and the investment function I(R).  Several 

investment functions such as 𝐼 𝑅 =  𝑘𝑅2,  𝐼 𝑅 =  𝐴𝑒𝑏𝑅  and 𝐼 𝑅 =  −𝜆 log 1 − 𝑅  where 

𝑘,𝐴, 𝑏 and 𝜆 are parameters satisfy 𝐼′′′ 𝑅 ≥ 0. Assuming that 𝐼 𝑅 satisfies 𝐼′′′ 𝑅 ≥ 0, 

from (18), when 𝛾 is sufficiently low, 𝑤𝑚  decreases with γ as in the forward only channel.  

Conversely, when 𝛾 is sufficiently high, the 𝑤𝑚  may increase with γ unlike the forward 

supply chain.  To gain intuition, note that we can substitute (17) into (18) to obtain,  

𝑑𝑤𝑚

𝑑𝛾
=

1

2
 −

𝛼𝛽

𝛾2
−
𝑑𝑅𝑚
𝑑𝛾

  (19) 
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Hence, when ∆ is sufficiently high, there is a substantial decrease in remanufacturability with 

γ representing an increase in the average cost of manufacturing/remanufacturing per product 

which ultimately leads to increased wholesale price w. We can obtain an expression for 
𝑑𝑝𝑚

𝑑𝛾
 

from the reaction 𝑝(𝑤) and 
𝑑𝑤𝑚

𝑑𝛾
    (18) as shown in (20).  In contrast to the forward supply 

chain (Appendix B), the price pm increases with γ when 𝛾 is sufficiently high for similar 

reasons why the wholesale price increases with γ. 

𝑑𝑝𝑚
𝑑𝛾

=
1

2
 −

3𝛽

2𝛾2
+

∆2(𝐶𝑚 − 𝑅∆)

2𝛼 4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2 
  (20) 

 

3.3.2 Comparative Statics with Respect to Cost Saving per Remanufactured Product ∆ 

From the implicit function theorem we have, 

 

𝜕𝑤𝑚

𝜕∆
𝜕𝑅𝑚
𝜕∆

 =

 

 

𝜕2𝜋𝑚
𝑚

𝜕𝑤2

𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕𝑅
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝑤

𝜕2𝜋𝑚
𝑚

𝜕𝑅2  

 

−1

 

 
−
𝜕2𝜋𝑚

𝑚

𝜕𝑤𝜕∆

−
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕∆ 

  

 

(21) 

 

 

𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕∆
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕∆ 

 =  

1

2𝛼

−
∆

2𝛼

    (22) 

 

Substituting the hessian (14) and (22) into (21), we have 

𝑑𝑅𝑚
𝑑∆

=
2𝛼𝛽 − 2𝑤𝛾 + 𝑅𝛾∆

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2
 (23) 



www.manaraa.com

25 

 

Substituting (10) into (23), 

𝑑𝑅𝑚
𝑑∆

=
𝛼𝛽 − 𝐶𝑚𝛾 + 2𝑅𝛾∆

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2
 (24) 

Since 𝛼𝛽 > 𝐶𝑚  from (24), as expected the optimal remanufacturability is increasing with ∆.  

Equation (25) provides the resulting expression for 
𝑑𝑤𝑚

𝑑∆
  from the solution of (21).  

𝑑𝑤𝑚

𝑑∆
= −

∆𝛼𝛽 − ∆𝑤𝑚𝛾 + 2𝑅𝛼2𝐼′′ (𝑅𝑚)

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2
 (25) 

Substituting (10) into (25),  

𝑑𝑤𝑚

𝑑∆
= −

∆(𝛼𝛽 − 𝐶𝑚𝛾 + 𝑅𝛾∆) + 4𝑅𝛼2𝐼′′ (𝑅𝑚)

2 4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2 
 (26) 

From (26), the equilibrium w always decreases with ∆. Also considering the reaction 𝑝(𝑤) 

we have that the equilibrium price pm always decreases with ∆ as well as shown in (27). 

𝑑𝑝𝑚
𝑑∆

= −
∆(𝛼𝛽 − 𝐶𝑚𝛾 + 𝑅𝛾∆) + 4𝑅𝛼2𝐼′′ (𝑅𝑚)

4𝛼 4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2 
 (27) 

The results show that an increase in ∆ results in a reduced w and p and an increase in R.  A 

possible rationale for this result is that given an increased ∆, w and p are reduced so that the 

increased cost savings R∆ are realized from a greater number of products. 

3.3.3 Comparative Statics with Respect to Product Life α 

From implicit function theorem we have, 

 

𝜕𝑤𝑚

𝜕𝛼
𝜕𝑅𝑚
𝜕𝛼

 =

 

 

𝜕2𝜋𝑚
𝜕𝑤2

𝜕2𝜋𝑚
𝜕𝑤𝜕𝑅

𝜕2𝜋𝑚
𝜕𝑅𝜕𝑤

𝜕2𝜋𝑚
𝜕𝑅2  

 

−1

 

 
−
𝜕2𝜋𝑚
𝜕𝑤𝜕𝛼

−
𝜕2𝜋𝑚
𝜕𝑅𝜕𝛼 

  (28) 
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𝜕2𝜋𝑚
𝜕𝑤𝜕𝛼
𝜕2𝜋𝑚
𝜕𝑅𝜕𝛼 

 =  

1

2𝛼

−
∆

2𝛼

    (29) 

 

Substituting the hessian (14) and (29) into (28), we have 

𝑑𝑅𝑚
𝑑𝛼

= −
∆ 𝛽 −

2𝐶𝑚𝛾 + 2𝑅𝛾∆
𝛼  

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2
 (30) 

From (30) 𝑅𝑚decreases with α when α is sufficiently large i.e. when 𝛼 > 2𝛾(𝐶𝑚 + ∆)/𝛽. 

Conversely, 𝑅𝑚  increases with α when α is sufficiently small i.e when 𝛼 < 2𝛾(𝐶𝑚)/𝛽. 

When2𝛾(𝐶𝑚 + ∆)/𝛽 ≥ 𝛼 ≥ 2𝛾𝐶𝑚/𝛽, 𝑅𝑚  can increase or decrease with α depending on the 

investment function I(R).  An intuitive interpretation for this result is as follows. From the 

first order condition (9), the optimal 𝑅𝑚  is a function of the optimal demand for 

products (𝛽 − 𝛾𝑝 𝑤𝑚 ) 𝛼 .  Consequently, the sign of 
𝑑𝑅𝑚

𝑑𝛼
 depends on whether the optimal 

demand for products increases or decreases with α. If the demand for services is held 

constant then increased α implies that the demand for services can be met with a fewer 

products.  On the other hand increased α represents a decrease in the cost of providing the 

services and may be an incentive for increasing the demand for services. When α is 

sufficiently large, the increase in demand for services with α is sufficiently small such that 

there is a decrease in the demand for products (𝛽 − 𝛾𝑝) 𝛼  and thus a decrease in R.  When α 

is sufficiently small, the increase in demand for services is large enough to cause an increase 

in the demand for products and thus an increase in R.  
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Equation (31) provides an expression for 
𝑑𝑤𝑚

𝑑𝛼
 obtained by substituting (14) and (29) into (28) 

and solving, 

𝑑𝑤𝑚

𝑑𝛼
=
𝛾 𝛼𝛽 − 2𝑤𝛾 ∆2 −  𝛼𝛽 + 2𝛾 𝐶𝑚 − 𝑅𝑚∆ − 2𝑤  2𝛼2𝐼′′ (𝑅)

𝛼𝛾(4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2)
 (31) 

Substituting (10) into (31) and simplifying   

𝑑𝑤𝑚

𝑑𝛼
=

2𝛽𝛼3𝐼′′  𝑅𝑚 − 𝛾∆2 𝐶𝑚𝛾 − 𝑅𝑚𝛾∆ 

𝛼𝛾(4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2)
 (32) 

From (32), 
𝑑𝑤𝑚

𝑑𝛼
> 0 since 𝛼𝛽 > 𝐶𝑚𝛾 and considering the assumption that 2𝛼2𝐼′′  𝑅 > 𝛾∆2. 

The increase in w with α seems intuitive since more units of service can be provided per 

product with a greater α..  We can obtain an expression for  
𝑑𝑝𝑚

𝑑𝛼
 from (32) and the reaction 

function p (w) as shown in    

𝑑𝑝𝑚
𝑑𝛼

=
∆2 𝛼𝛽 − 𝐶𝑚𝛾 + 𝑅𝛾∆ − 4(𝐶𝑚 − 𝑅∆)𝛼2𝐼′′ (𝑅𝑚)

4𝛼2 4𝛼2𝐼′′ (𝑅𝑚) − 𝛾∆2 
 (33) 

 

3.4 Comparison of MDSC and CCSC 

In this Section, we analyze how the lack of coordination in MDSC impacts the investment in 

remanufacturability and the price per unit service by comparing MDSC equilibrium with the 

benchmark CCSC solution.  

3.4.1 The Centrally Coordinated Supply Chain (CCSC) 

In this section, we assume that the manufacturer and the service provider are centrally 

coordinated by a central planner. Since financial transactions between the manufacturer and 
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the service provider do not directly influence the total SC profits, the relevant decision 

variables are the remanufacturability R and the price per unit service p. The total revenue for 

CCSC is given by (β-γp) p and the total cost for manufacturing/remanufacturing to provide 

the (β-γp) services is given by (β-γp)( Cm-R Δ)/. The central planner’s profit maximization 

problem is formulated by (34). 

)()(
)(

)(
,

RIRC
p

ppMax mc
Rp










 
(34) 

The first derivatives of CCSC profit 𝜋𝑐  with respect to p and R are provided by (35) and (36) 

respectively. 

                                    
(35) 
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p

R
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(36) 

The Hessian matrix of CCSC profit 𝜋𝑐  is given by (37) 
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2
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(37) 

The principal minors of the first order are clearly negative since I(R) is convex by 

assumption. Hence, the necessary condition for strict concavity is that the determinant of the 

Hessian is positive i.e., 

0
2

)(
2
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Given that (38) is true, the optimal remanufacturability Rc and pc   are found by equating the 

first derivatives (34) and (35) to zero. 

3.4.2 Comparison of Remanufacturabilities and Prices in MDSC and CCSC 

In this section, we show that the optimal remanufacturability in MDSC spR is less than the 

optimal remanufacturability in CCSC cR . 

Proof: The first order condition (9) is satisfied at MDSC equilibrium. Considering (11), the 

first order condition (9) can be expressed as shown in (39). 

∆  
𝛼𝛽 − 𝛾𝐶𝑚 + 𝑅𝑚𝛾∆

4𝛼2
 = 𝐼′(𝑅𝑚) (39) 

Suppose, instead of the optimal Rc,  we set the remanufacturability at mRR   in CCSC and 

then find the best price p given that mRR   by setting the first derivative (35) to zero,  





2

)(
|




mm
RR

RC
p

m

 
(40) 

Then, the rate of change of profit πc with increase in R at mRR   and
mRRp |  is given by 

equating the first derivative (36)  to zero and substituting for 
mRRp |  from (40).  

 
)(

2 2
|,

m
mm

RRPRR

c RI
RC

R
mm









 


 (41) 

Substituting the value of )( mRI   from (39) into (41), 
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2

|, 2

 








mm

RRpRR

c RC

R
mm

 (42) 

Therefore, from (42) if mRR  in CCSC, we can increase the total profit c  by increasing R. 

However as c is a concave function of R and p, mc RR  . We will now show that the 

optimal price in MDSC mp is greater than the optimal price in CCSC cp . 

Proof:  Considering (10), the optimal price in MDSC is  





4

3 
 mm

m

RC
p

 
(43) 

Equating the first derivative (35) to zero,  





2


 cm

c

RC
p

 
(44) 

Therefore,  





4

)2( 
 mcm

cm

RRC
pp  (45) 

From (45), 0 cm pp  since 0 mc RR  and  mC .  The above results show that the 

lack of coordination (Double marginalization) leads to a higher price for the customers and 

lower investment in remanufacturability when the manufacturer is the Stackelberg leader.  

One interpretation of this proposition is that the double marginalization in the decentralized 

MDSC leads to decreased demand and thus a lesser incentive to invest in remanufacturing. 
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3.5 Analysis with a Quadratic Investment Function     

In this section, we will illustrate the analytical results derived previously with a specific 

quadratic investment function I(R) = kR
2
 and numerical examples. The use of specific 

functional form enables us to gain additional insights, perform sensitivity analysis and obtain 

directions for further exploration. The quadratic investment function is often used to 

represent investment with diminishing results and results in closed form expressions for most 

optimal quantities. A similar investment function I(q) = kq
2
  where q is the quality has been 

utilized by [27, 33].  

Given this investment function, the parameter k represents the investment required for a 

remanufacturability of 1.  In this case, the condition for concavity, Inequality (38) becomes 

2

2

2
2




k .   The optimal quantities can be solved for straight forwardly from the equilibrium 

conditions. Table 1 provides the equilibrium R, p, demand and the total profits in MDSC and 

CCSC.   
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Table 1.  Expressions for p, R, total supply profits and optimal demand in MDSC and CCSC 

MDSC CCSC 
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3.5.1 Illustration of the Analytical Results  

1) Remanufacturabilities: Equation (46) provides an expression for Rm/Rc. From (46), we 

can observe that Rm becomes a smaller fraction of Rc as delta increases.  

22

2

8

4
1








k

k

R

R

c

m  (46) 

  2) Prices:  Equation (47) provides an expression for cm pp  . From (47)  cm pp   since 

 mC  >0 if demand is positive in any SC.  
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 cm pp
)8)(4(

)(
2222

2









kk

Ck m  (47) 

3.5.2 Additional Observations from I(R) = kR
2
 

Percentage profit gain with coordination δ:  The percentage δ is a measure of the benefit 

obtained by coordinating a decentralized supply chain and is defined as    

 100(𝜋𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑑 −𝜋𝑑𝑒𝑐𝑒𝑛𝑡𝑟 𝑎𝑙𝑖𝑧𝑒𝑑 ) 𝜋𝑚𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 .  Equation (48) provides an expression δ 

of MDSC.  From (48), δ for MDSC is greater than 33%. 

  2222

42

124

16
100









kk

k
MDSC  (48) 

               

From (48), δMDSC  increases with increase in marginal demand γ or the cost savings due to 

remanufacturing Δ since 
24 k > 2  if CCSC profit is concave. In general, this result 

indicates that conditions that are conducive to remanufacturing such as a high Δ, low k and α 

(a lower product life under some conditions can lead to a lower remanufacturability) also 

result in a higher percent gain with coordination in MDSC 

3.5.2  Numerical Examples 

We will now present a couple of numerical examples with hypothetical data to illustrate the 

results derived with I(R) =kR
2
.  The parameters of the first example are such that the optimal 

R in CCSC is less than 0.65.  The specific parameter values for the first example are k = 1 

000 000, Cm = 23737, β=8 000 000 and γ = 2 500 000.  We selected the parameters α and ∆ 

for sensitivity analysis.  We first varied ∆ between 2000 and 7000 with a fixed α of 12 113.  
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In this case, the central planner’s profit would be concave and we would have a unique 

Stackelberg equilibrium in MDSC if ∆< 15321. Figure 2 and Figure 3 show the variation of 

R and p with ∆ respectively in MDSC and CCSC. From Figure 2, we can observe that R is 

nonlinearly increasing with ∆.  In addition, the difference between the remanufacturabilities 

of CCSC and MDSC is the greatest when ∆ is large. This observation can be expected from 

(46) and can be interpreted as follows. From Table 1, the optimal R is equal to the optimal 

demand multiplied by ∆/2𝑘𝛼. The optimal demand is lesser in MDSC compared to CCSC 

due to double marginalization implying that the additional cost savings due an increase in ∆ 

would be applicable to a lesser number of products resulting in a lesser incentive to increase 

the remanufacturability. Furthermore, from Table 1, the optimal demand increases at a 

greater rate with ∆ in MDSC compared to CCSC.  Similarly, the difference between the price 

p in CCSC and SPDSC is the greatest when ∆ is large. 

 
Figure 2 Variation of R with ∆ in MDSC and CCSC 

 

MDSC 

CCSC 
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Figure 3 Variation of p with ∆ in MDSC and CCSC 

  

From Figure 4, we observe that the percentage profit gain with coordination δ is nonlinearly 

increasing with ∆ for MDSC.  As we observed, CCSC solution is more responsive to 

increased cost savings per remanufactured product with a greater increase in 

remanufacturability and decrease in the price compared to MDSC.  Hence, coordination is 

much more beneficial when ∆ is high given a quadratic investment function. 

 
Figure 4 Variation of the Percentage Gain δ in MDSC with ∆ 

MDSC 

CCSC 
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To observe the sensitivity with respect to the product life, we varied α between 8000 and 20 

000 while fixing ∆ at 6500.  and show the variation of R and p in MDSC and CCSC with α 

while ∆ is 6500.  We can observe that at higher values of α, the optimal R is decreasing with 

α in MDSC as well as CCSC.  In this case, a higher α is leading to a decrease in the overall 

demand for products (𝛽 − 𝛾𝑝) 𝛼  implying a lesser incentive for fixed cost investment in R. 

Counter intuitively R increases with α when α is sufficiently small. In this case, an increase in 

product life is leading to a sufficiently large increase in the demand for services (𝛽 − 𝛾𝑝) 

such that the demand for products (𝛽 − 𝛾𝑝) 𝛼  is increasing with α.  

 
Figure 5 Variation of R with α in MDSC and CCSC 
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Figure 6 Variation of p in MDSC and CCSC with α 

 

 

 

 

 

 

 

 
Figure 7 Variation of the Percentage Profit Gain δ in MDSC with α 
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4.  The Manufacturer Driven Supply Chain (MDSC) with Variable 

Product Life 

A longer product life and increased remanufacturing have both been recommended from an 

environmental perspective. Meanwhile, some of the qualitative reports have suggested that 

selling services instead of selling goods can lead to increased product reuse and a greater 

product life.  In this chapter, we extend MDSC to consider investment in remanufacturability 

as well as variable product life α and investigate under what conditions is a higher 

remanufacturability or a greater product life preferred. Specifically, we assume that the 

product life can be increased by utilizing longer life components that result in a greater 

variable cost of manufacturing Cm.   

This chapter is organized as follows. In section 4.1 we introduce the additional notation 

related to the variable product life and discuss the modeling assumptions. Next in section 4.2, 

we formulate MDSC with variable product life as a Stackelberg game and derive the 

equilibrium conditions.  In Section 4.3, we perform comparative statics analysis to analyze 

how γ and ∆ impact the equilibrium product life and remanufacturability. Next in Section 4.4, 

we compare the α, R and p between MDSC and CCSC. Finally, we provide numerical 

examples in Section 4.5. 

4.1 Notation and Assumptions 

As discussed in the introduction, we assume that the  product life α can be increased by 

utilizing better quality components resulting in a higher variable cost of manufacturing (e.g, 

copier bushings with better thermal properties[17]).  Hence, we assume that the 

manufacturing cost per product Cm is a convex and increasing function of product life Cm(α).  
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Similarly, we assume that the remanufacturing cost per product Cr  is a convex and increasing 

function of product life Cr(α). We note that similar functions relating the manufacturing cost 

to the product life have been utilized in other relevant articles [18, 19]. 

We assume a constant cost savings per remanufactured product regardless of the product life, 

i.e., Cm (α) - Cr (α) = ∆ ∀ 𝛼. The assumption is justified as follows.  A product is composed 

of multiple components which vary with respect to their component life.  In a typical 

remanufacturing process, the production cost savings ∆ is achieved via the reuse of relatively 

long life components also referred to “core components” (e.g, electric motors in the case of 

copiers and casing for tires)  [34].  Meanwhile, the product life is most impacted by the life 

of relatively short life components that are replaced during the remanufacturing process.  

Hence, the cost savings per remanufactured product ∆ would not be significantly affected if 

the product life is improved via utilizing better quality short life components that are replaced 

in the remanufacturing process. 

We assume that the product life values of interest are greater than a lower limit αl.  The lower 

limit is based on the grounds that there is often some technological limit beyond which it is 

not feasible to further reduce the product life.  

4.2 Stackelberg Game Formulation 

As in the case when product life was a parameter, we model this supply chain as a 

Stackelberg game where the manufacturer is the leader and makes his decisions first while 

the service provider is the follower and makes her decisions later.  Since the service provider 

is the follower in our MDSC, she accepts the price per product w and the product life α that is 
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determined by the manufacturer, and in turn determines the price per unit service 𝑝 that 

maximizes her profits.  Being the leader, the manufacturer anticipates the service provider’s 

best response function 𝑝(𝑤,𝛼) and determines the optimal wholesale price wm, the 

remanufacturability Rm and the product life αm that maximize his profit.  In what follows, we 

will derive sufficient conditions for the existence and uniqueness of the Stackelberg 

equilibrium and state the equilibrium conditions. 

To solve the Stackelberg game we first optimize the service provider’s profit and determine 

her best response function  𝑝(𝑤,𝛼) to a given w and α.  The best response function refers to 

the optimal price p that maximizes the service provider’s profit 𝜋𝑠𝑝
𝑚  given the wholesale price 

w and the product life α.  The service provider’s profit maximization is formulated by (49). 

The term  𝛽 − 𝛾𝑝  in (49) is the demand for services while (𝑝 −
𝑤

𝛼
) is the service provider’s 

margin per unit service. 

𝑀𝑎𝑥
𝑝

 𝜋𝑠𝑝
𝑚 =  𝛽 − 𝛾𝑝 (𝑝 −

𝑤

𝛼
) (49) 

In the Stackelberg game, concavity of the follower’s objective implies that his best response 

function is single valued and is a sufficient condition for the existence of the Stackelberg 

equilibrium[31]. From (49),  
𝜕2  𝜋𝑠𝑝

𝑚

𝜕𝑝2 =-2γ <0. Therefore,  𝜋𝑠𝑝
𝑚  is a concave function of the 

price p implying that the service provider’s best response function is single valued. The first 

order condition for maximizing the service provider’s profit is given by (50). 

𝜕𝜋𝑠𝑝
𝑚

𝜕𝑝
= 𝛽 − 2𝛾𝑝 +

𝑤

𝛼
= 0 (50) 

Solving (50) the service provider’s best response function is as provided by (51). 
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𝑝 𝑤,𝛼 =
𝛼𝛽 + 𝑤𝛾

2𝛼𝛾
 (51) 

The next step in solving the Stackelberg game is to determine the w, R and α that maximize 

the manufacturers profit 𝜋𝑚
𝑚  while considering the service provider’s best response 

function 𝑝 𝑤,𝛼 . The manufacturer’s profit maximization problem is formulated by (52).  

Here, the term   𝛽 − 𝛾𝑝(𝑤,𝛼) /𝛼 is the total number of products while  (𝑤 − 𝐶𝑚 (𝛼) + 𝑅∆) 

is the manufacturer’s margin per product. The fixed cost investment required to achieve a 

remanufacturability of R is represented by 𝐼(𝑅). 

𝑀𝑎𝑥
𝑤,𝑅,𝛼

 𝜋𝑚
𝑚 =

 𝛽 − 𝛾𝑝(𝑤,𝛼) 

𝛼
 𝑤 − 𝐶𝑚(𝛼) + 𝑅∆ − 𝐼(𝑅) (52) 

Substituting the service provider’s best response function 𝑝(𝑤,𝛼) from (51) into (52),  

𝜋𝑚
𝑚 =

𝛼𝛽 − 𝑤𝛾

2𝛼2
 𝑤 − 𝐶𝑚 (𝛼) + 𝑅∆ − 𝐼(𝑅) (53) 

The first order conditions for maximizing 𝜋𝑚
𝑚

  are given by (54), (55) and (56).  

𝜕𝜋𝑚
𝑚

𝜕𝑤
=
𝛼𝛽 − 2𝑤𝛾 − 𝑅𝛾∆ + 𝛾𝐶𝑚(𝛼)

2𝛼2
= 0 (54) 

𝜕𝜋𝑚
𝑚

𝜕𝑅
=
∆ 𝛼𝛽 − 𝑤𝛾 

2𝛼2
− 𝐼′ 𝑅 = 0 (55) 

𝜕𝜋𝑚
𝑚

𝜕𝛼
= −

 𝛼𝛽 − 2𝑤𝛾  𝑤 + 𝑅∆ − 𝐶𝑚 𝛼  + 𝛼 𝛼𝛽 − 𝑤𝛾 𝐶𝑚
′ (𝛼)

2𝛼3
= 0 (56) 

A sufficient condition for the existence of the Stackelberg equilibrium is the quasiconcavity 

of the leader’s objective. A function 𝑓 defined on a convex set U in 𝑅𝑛  is quasiconcave for 

all 𝒙,𝒚 ∈ 𝑈 we have 𝑓 𝒙 ≥ 𝑓 𝒚  implies f (λx + (1 − λ) y) > f (y)[32].  A sufficient 

condition for the quasi-concavity of 𝜋𝑚
𝑚  is that it is strictly concave at any critical point. 
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Here, a critical point is defined as any point where the first order conditions are met (See Ray 

et al  [35] for a similar approach to prove the uniqueness of the Stackelberg equilibrium). Let 

𝐷2𝜋𝑚
𝑚   denote the hessian matrix of the manufacturer’s profit as given by (57).  We will have 

a unique Stackelberg equilibrium if the hessian 𝐷2𝜋𝑚
𝑚    is negative definite at any critical 

point. 

𝐷2𝜋𝑚
𝑚   =  

11 12 13

21 22 23

31 32 33

  

Where             

11 =
𝜕2 𝜋𝑚

𝑚

𝜕𝑤2
= −

𝛾

𝛼2
 

12 =
𝜕2 𝜋𝑚

𝑚

𝜕𝑤𝜕𝑅
= −

𝛾∆

2𝛼2
 

                                                      

13 =
𝜕2 𝜋𝑚

𝑚

𝜕𝑤𝜕𝛼
=
𝛾(𝑅∆ − 𝐶𝑚 𝛼 + 𝛼𝐶𝑚

′  𝛼 )

𝛼2
     

(57) 

 

22 =
𝜕2 𝜋𝑚

𝑚

𝜕𝑅2
= −𝐼′′(𝑅) 

23 =
𝜕2 𝜋𝑚

𝑚

𝜕𝑅𝜕𝛼
= −

𝛼𝛽∆ − 2𝑤𝛾∆

2𝛼3
 

33 =
𝜕2 𝜋𝑚

𝑚

𝜕𝛼2
=

1

2𝛼4
(2𝑤𝛼𝛽 − 6𝑤2𝛾 + 2𝑅𝛼𝛽∆ − 6𝑅𝑤𝛾∆ +  6𝑤𝛾 − 2𝛼𝛽 𝐶𝑚 𝛼 

+ 2𝛼 𝛼𝛽 − 2𝑤𝛾 𝐶𝑚
′  𝛼 + 𝛼2 𝑤𝛾 − 𝛼𝛽 𝐶𝑚

′′  𝛼 ) 
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The conditions for the hessian 𝐷2𝜋𝑚
𝑚    provided by (57)  to be negetive definete are 1) h11<0, 

2) h11 h22 –(h12)
2
>0, and 3) Determinanant of the hessian 𝐷2𝜋𝑚

𝑚    from (57) is negetive.  

Clearly, h11 <0.  The second condition h11 h22 –(h12)
2
>0  is elaborated in Inequalities (58) and 

(59) and will be met if 𝐼′′ 𝑅  is sufficiently large or product life α is sufficiently large.  

1122 −  12 
2 =

𝛾𝐼′′(𝑅)

𝛼2
−
𝛾2∆2

4𝛼4
> 0    (58) 

  

Simplifying  inequality (58), 

4𝛼2𝐼′′ 𝑅∗ > 𝛾∆2 (59) 

Let us now consider the final condition for  𝜋𝑚
𝑚  to be strictly concave at a critical point i.e. 

the |𝐷2𝜋𝑚
𝑚 |  defined as the determinant of the hessian 𝐷2𝜋𝑚

𝑚   from (57)  is negetive.  

Equation (60)  provides the expression for the determinant of |𝐷2𝜋𝑚
𝑚 |.  

|𝐷2𝜋𝑚
𝑚 |   =

1

8𝛼8
(2𝛾2 𝛼𝛽 − 𝑤𝛾 ∆2 𝑤 + 𝑅∆ + 8𝛼2𝛾2𝐶𝑚 𝛼 

2𝐼′′ 𝑅 

− 2𝛾2𝐶𝑚 𝛼 ( 𝛼𝛽 − 𝑤𝛾 ∆2

+ 4𝛼2  𝑤 + 2𝑅∆ + 𝛼𝐶𝑚
′  𝛼  𝐼′′ 𝑅 

+ 𝛼2(2   𝛼𝛽 − 𝑤𝛾 2 + 4𝑅𝑤𝛾2∆ + 4𝑅2𝛾2∆2

+ 𝛼𝛾𝐶𝑚
′  𝛼  2𝛼𝛽 + 4𝑅𝛾∆ + 𝛼𝛾𝐶𝑚

′  𝛼  𝐼′′ 𝑅 

+ 𝛾 𝛼𝛽 − 𝑤𝛾 𝐶𝑚
′′  𝛼  𝛾∆2 − 4𝛼2𝐼′′ 𝑅   ) 

(60) 

However, since we  only need to prove strict concavity at any critical point, we can simplify 

the expression for determinant of|𝐷2𝜋𝑚
𝑚 | shown in (60) by substituting the first order 

conditions (56) and (54). The resulting conditon for the determinant |𝐷2𝜋𝑚
𝑚 |  to be negetive 

is shown  in (61). Inequality (61) will be true if the maximum demand β is sufficiently low. 
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∆2𝛽 − 𝛾∆2𝐶𝑚
′  𝛼 − 𝛼𝐶𝑚

′′  𝛼  4𝛼2𝐼′′ 𝑅 − 𝛾∆2 

< 0                                                       
(61) 

In summary,  we will have a unique Stackelberg equilibrium if  (61) and (59) are true in the 

relavent range of variables i.e., 0 < 𝑅 < 1 and 𝛼𝑙 < 𝛼 . The equilibrium wholesale price wm, 

remanufacturability Rm and the product life αm are implicitly determined by the first order 

conditions (54), (55) and (56). Now, since 
𝜕2  𝜋𝑚

𝑚

𝜕𝑤2
< −

𝛾

𝛼2
 ,  𝜋𝑚

𝑚   is concave with respect to w, 

we can solve the first order condition (54) to find 𝑤 (𝑅,𝛼), the optimal w for a given R and α 

(See Porteus [30] for a similar approach).  

𝑤 (𝑅,𝛼) =
𝛼𝛽 + 𝛾𝐶𝑚  𝛼 − 𝑅𝛾∆

2𝛾
 (62) 

From(62), 𝑤 (𝑅,𝛼) decreases with R when 𝛼 is held constant because an increase in R 

represents a decrease in the average manufacturing/remanufacturing cost per 

product 𝐶𝑚  𝛼 − 𝑅∆.  Conversely, 𝑤 (𝑅,𝛼) increases with α given a constant R since an 

increase in α implies that a greater number of services can be provided from a single product.  

The term  𝛼𝛽 − 𝑤𝛾 2𝛼2  from the first order condition (55) is the optimal demand for 

products based on the service provider’s best response function. This dependence of 𝑅 on the 

optimal demand for products is possibly due to considering fixed cost investment in 

remanufacturability. Since both (54) and (56) are satisfied at the equilibrium, we can 

substitute (54) in (56)  to obtain,  

𝜕𝜋𝑚
𝑚

𝜕𝛼
= −

(𝛼𝑚𝛽 + 𝛾𝐶𝑚 𝛼𝑚 − 𝑅𝑚𝛾∆)(𝑅𝑚∆ − 𝐶𝑚 𝛼𝑚 + 𝛼𝑚𝐶𝑚
′  𝛼𝑚 )

2𝛾
= 0 

 

(63) 
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Now, given the expression 𝑤 (𝑅,𝛼) from (62) and the service provider’s best response 

function p(w,α), the equilibrium demand for service is related to the equilibrium 𝛼𝑚  and 

𝑅𝑚as shown by (64).  

𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚  ,𝛼𝑚 =
𝛼𝑚𝛽 − 𝛾𝐶𝑚(𝛼𝑚) + 𝛾𝑅𝑚∆

4𝛼𝑚
 (64) 

From (64), 𝛼𝑚𝛽 − 𝛾𝐶𝑚 𝛼𝑚 + 𝛾𝑅𝑚∆> 0 if the optimal demand is positive. Therefore, from 

(63) we have that at the Stackelberg equilibrium 𝑅∆ − 𝐶𝑚  𝛼 + 𝛼𝐶𝑚
′  𝛼  = 0.  The result 

shows that demand parameters do not directly affect the optimal product life except by their 

indirect effect via the optimal remanufacturability. This result may be due to modeling α as 

being associated with the variable cost of manufacturing and is consistent with Swan[19].  

Let us examine what kind of manufacturing cost functions 𝐶𝑚 𝛼  can satisfy the quasi 

concavity condition (61) as well as the first order condition 𝑅∆ − 𝐶𝑚  𝛼 + 𝛼𝐶𝑚
′  𝛼 .  From 

(64), 𝛼𝑚𝛽 − 𝛾𝐶𝑚 𝛼𝑚 + 𝛾𝑅𝑚∆> 0. Considering  𝑅∆= 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼  , 𝛼𝛽 >

𝛾(𝐶𝑚 𝛼 − 𝐶𝑚  𝛼 + 𝛼𝐶𝑚
′  𝛼 )  i.e 𝛽 > 𝛾𝐶𝑚

′  𝛼 .  Hence the term, ∆2𝛽 − 𝛾∆2𝐶𝑚
′  𝛼  in 

quasiconcavity condition (61) is positive. Hence, 𝜋𝑚  is quasiconcave if both I’’(R) and 

𝐶𝑚
′′  𝛼  are sufficiently large.  Also, if the quasi concavity conditions are satisfied for all R, 

0<R<1, for a specific value of α = αl, suppose 𝐶𝑚
′′′  𝛼 ≥0, then the quasi concavity condition 

is satisfied for all α >αl.  Examples of investment functions that meet the above criteria 

are 𝐶𝑚 𝛼 = 𝐶𝑚0 + 𝑠𝛼𝑛  and  𝐶𝑚 𝛼 = 𝐶𝑚0 + 𝑠𝑒𝛼  etc. 

Let us now examine how the optimal remanufacturability impacts the optimal product life. 

Let 𝐶𝑚  𝛼 − 𝛼𝐶𝑚
′  𝛼 − 𝑅∆= G α, R = 0. Now, since G α, R  is always satisfied at the 

Stackelberg equilibrium, we can utilize the implicit function to analyze how the optimal 
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remanufacturability influences the product life as shown in (65). From (65), we observe that 

the optimal product life decreases with an increase in the optimal remanufacturability as long 

as the functional form of   𝐶𝑚 𝛼  and ∆ do not change.  The result highlights the conflict 

between the optimal product life and the optimal remanufacturability. 

𝑑𝛼

𝑑𝑅
=
−
𝜕𝐺
𝜕𝑅
𝜕𝐺
𝜕𝛼

= −
∆

𝛼𝐶𝑚′′  𝛼  
< 0 (65) 

In what follows, we will perform comparative statics analysis to analyze how the equilibrium 

values vary with changes in key parameters.  

4.3 Comparative Statics of the Stackelberg Equilibrium. 

In this section, we will analyze how the equilibrium values Rm and αm vary with changes in γ 

and ∆.  We will convert the three variable optimization problem of maximizing 𝜋𝑚
𝑚  into an 

equivalent two variable form for ease of presentation(See Porteus [30] for a similar 

approach). Recall that since
𝜕2  𝜋𝑚

𝑚

𝜕𝑤2 < −
𝛾

𝛼2,  𝜋𝑚
𝑚   is concave with respect to w and we can 

obtain an expression for the optimal wholesale price 𝑤 (𝑅,𝛼) for a given R and α as provided 

by (66).  We can substitute (66) into (52) to obtain an expression for  𝜋𝑚
𝑚  (R, α) defined as 

maximum manufacturer’s profit by optimizing the wholesale price w for a given R and α as 

shown in (67). 

𝑤 (𝑅,𝛼) =
𝛼𝛽 + 𝛾𝐶𝑚 𝛼 − 𝑅𝛾∆

2𝛾
 (66) 

𝜋𝑚 𝛼,𝑅 = 𝜋𝑚 𝑤 (𝑅,𝛼),𝑅,𝛼 =
 𝛼𝛽 − 𝛾𝐶𝑚(𝛼) + 𝛾𝑅∆ 2

8𝛼2𝛾
− 𝐼(𝑅) (67) 



www.manaraa.com

47 

 

The results of the comparative statics with respect to γ and ∆ are summarized as Proposition 

1.  

PROPOSITION 1.  An increase in cost savings per remanufactured product ∆ or a decrease in 

the marginal demand γ lead to increased demand for services, increased investment in 

remanufacturability and reduced product life in MDSC Stackelberg Equilibrium. 

Proposition 1 shows that conditions leading to a higher remanufacturability are also resulting 

in a shorter product life in MDSC.  An interpretation of this result is that increased 

remanufacturability implies a decrease in the average variable cost of 

manufacturing/remanufacturing the product which is an incentive for decreasing the product 

life.  The managerial implication is that manufacturers/remanufacturers should consider 

reducing the product life under the above conditions that are favorable for remanufacturing. 

The proof of proposition 1 is provided by the comparative statics in Sections 4.3.1 and 4.3.2. 

4.3.1  Comparative Statics with Respect to Marginal Demand γ 

We utilize the implicit function theorm to perform comparative statics with respect to γ [32]. 

Equation (68)  provides  𝐷2𝜋𝑚
𝑚  (R, α) defined as the hessian matrix for  𝜋𝑚

𝑚  (R, α). 

 𝐷2𝜋𝑚
𝑚  (𝑅,𝛼)  =  

11 12

21 22
  

Where, 

11 =
𝜕2 𝜋𝑚

𝑚 (𝑅,𝛼)

𝜕𝑅2
=
𝛾∆2

4𝛼2
− 𝐼′′ (𝑅) (68) 
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12 = 21 =
𝜕2 𝜋𝑚

𝑚 (𝑅,𝛼)

𝜕𝑅𝜕𝛼
= −

∆(𝛼𝛽 − 2𝐶𝑚 (𝛼)𝛾 + 𝛼𝛾𝐶𝑚
′ (𝛼) + 2𝑅𝛾∆)

4𝛼3
 

22 =
𝜕2 𝜋𝑚

𝑚 (𝑅,𝛼)

𝜕𝛼2

=
1

4𝛼4
(𝑅∆ − 𝐶𝑚  𝛼 

+ 𝛼 𝐶𝑚
′  𝛼   2𝛼𝛽 + 3𝑅𝛾∆ − 3𝛾𝐶𝑚 𝛼 + 𝛼𝛾𝐶𝑚

′  𝛼  − 𝛼2𝐶𝑚
′′  𝛼 (𝛼𝛽

+ 𝑅𝛾∆ − 𝛾𝐶𝑚  𝛼 ) 

The implicit function theorem is applicable if we have an interior equilibrium i.e., the first 

order conditions are met and the hessian matrix  𝐷2𝜋𝑚
𝑚  (R, α) as provided by (68) is 

nonsingular. Given the assumption that inequalities (59) and (61) are true,  𝜋𝑚
𝑚  𝑅,𝛼  is 

concave at the critical point and hence we can apply the implicit function theorem to 

characterize the equilibrium.  From implicit function theorem we have, 

 

 
 

𝜕𝑅𝑚
𝜕𝛾
𝜕𝛼𝑚
𝜕𝛾  

 
 

=

 

 

𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅2

𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅𝜕𝛼
𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅𝜕𝛼

𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝛼2  

 

−1

 

 
 
−
𝜕2𝜋𝑚  𝛼,𝑅 

𝜕𝑅𝜕𝛾

−
𝜕2𝜋𝑚  𝛼,𝑅 

𝜕𝛼𝜕𝛾  

 
 

 (69) 

Substituting the hessian 𝐷2𝜋𝑚
𝑚  (R, α) provided by (68) into (69) and solving,    

 

 
 

𝑑𝑅𝑚
𝜕𝛾
𝑑𝛼∗

𝜕𝛾  

 
 

=

 

 
 
 
 
12

𝜕2𝜋𝑚 𝛼,𝑅 
𝜕𝛼𝜕𝛾

− 22
𝜕2𝜋𝑚  𝛼,𝑅 

𝜕𝑅𝜕𝛾

1122 − 12
2

21
𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅𝜕𝛾
−11

𝜕2𝜋𝑚 𝛼,𝑅 
𝜕𝛼𝜕𝛾

1122 − 12
2  

 
 
 
 

 (70) 

From 𝜋𝑚
𝑚  (R, α) as provided by (67),  
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𝜕2𝜋𝑚 𝛼,𝑅𝑚  

𝜕𝑅𝜕𝛽

𝜕2𝜋𝑚 𝛼,𝑅𝑚  

𝜕𝛼𝜕𝛽  

 
 

=  

∆(𝐶𝑚(𝛼) − 𝑅∆)

4𝛼2

(𝐶𝑚(𝛼) − 𝑅∆)(𝐶𝑚(𝛼) − 𝑅∆ − 𝛼𝐶𝑚
′ (𝛼)

4𝛼3

    (71) 

Substituting (71) and (68) into (70) we can obtain expressions for 
𝜕𝑅𝑚

𝜕𝛾
  and 

𝜕𝛼𝑚

𝜕𝛾
 as given by 

(72) and (73).  

𝜕𝑅𝑚
𝜕𝛾

= −
∆(𝛼𝛽 − 𝛾𝐶𝑚(𝛼) + 𝑅𝛾∆)(𝛼2𝐶𝑚

′′  𝛼 + 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼 − 𝑅∆)(𝐶𝑚(𝛼) − 𝑅∆)

16𝛼6(1122 − 12
2 )

 

 

(72) 

The term 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆ in (72) is positive if the optimal demand is positive. 𝐶𝑚 (𝛼) −

𝑅∆ is positive since the average manufacturing cost per product is positive.  𝛼2𝐶𝑚
′′  𝛼 +

𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼 − 𝑅∆ is positive since 𝐶𝑚  𝛼 − 𝛼𝐶𝑚

′  𝛼 − 𝑅∆ = 0 and 𝐶𝑚
′′  𝛼 > 0 by 

assumption. Finally, since (1122 − 12
2 )>0, 

𝜕𝑅𝑚
∗

𝜕𝛾
 from (72) is negative.   

𝑑𝛼𝑚
𝑑𝛾

=
(∆2 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆ + 4𝛼2𝐼′′ (𝑅)(𝛼𝐶𝑚

′  𝛼 −𝐶𝑚 𝛼 + 𝑅∆))(𝐶𝑚(𝛼) − 𝑅∆)

16𝛼6(1122 − 12
2 )

 

(73) 

The term 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆ in (73) is positive if the optimal demand is greater than zero. 

𝐶𝑚(𝛼) − 𝑅∆ is positive since the average manufacturing per product is positive. –( 𝐶𝑚 𝛼 −

𝛼𝐶𝑚
′  𝛼 − 𝑅∆) is zero considering the first order condition(63). Finally, since (1122 −

12
2 )>0, 

𝜕𝛼𝑚

𝜕𝛾
 is positive. We will now analyze how the equilibrium demand for services 
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varies with an increase in γ.  From (64), the equilibrium demand for services is related to 𝛼𝑚  

and Rm as shown below. 

𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚 ,𝛼𝑚 =
𝛽

4
−
𝛾(𝐶𝑚 𝛼𝑚 − 𝑅𝑚∆)

4𝛼𝑚
 (74) 

To analyze how an increase in γ impacts the optimal demand for services, we can 

differentiate the expression for 𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚 ,𝛼𝑚    from (74) with respect to γ while 

noting that 𝛼𝑚  and Rm should be considered as functions of γ as shown in (75). 

𝑑(𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚 ,𝛼𝑚 )

𝑑𝛾

=
𝛼𝑚𝛾(−𝐶𝑚 𝛼𝑚 + 𝑅𝑚∆ + 𝛾

𝑑𝑅𝑚
𝑑𝛾

) +
𝑑𝛼𝑚
𝑑𝛾

γ(𝛼𝐶𝑚
′  𝛼 −𝐶𝑚 𝛼 + 𝑅∆))

4𝛼𝑚
 

(75) 

From (75), the optimal demand for services decreases with an increase in γ, considering that  

𝛼𝐶𝑚
′  𝛼 −𝐶𝑚 𝛼 + 𝑅∆ = 0 ,  𝐶𝑚 𝛼𝑚 > 𝑅𝑚∆ and 

𝑑𝑅𝑚

𝑑𝛾
< 0 from (72). The preceding results 

show that when the marginal demand γ increases then it is beneficial to decrease the 

remanufacturability and increase the product life.  An intuitive interpretation of this result is 

that an increase in γ results in decreased demand and hence a lesser incentive to invest in 

remanufacturability. The decreased remanufacturability leads to an increased average cost of 

manufacturing/remanufacturing per product which acts as an incentive for increasing the 

product life.   
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4.3.2 Comparative Statics with Respect to Cost Saving per Remanufactured Product ∆ 

We applied the Implicit function theorem to perform comparative statics analysis of MDSC 

equilibrium with respect to ∆.  Given that h11, h12, h13, and h14 are elements of the hessian 

matrix  𝐷2𝜋𝑚
𝑚   𝑅,𝛼  as given by (68), from the implicit function theorem,  

 

 

𝑑𝑅𝑚
𝜕∆
𝑑𝛼𝑚
𝜕∆  

 =

 

 
 
 
12

𝜕2𝜋𝑚 𝛼,𝑅 
𝜕𝛼𝜕∆

− 22
𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅𝜕∆
1122 − 12

2

21
𝜕2𝜋𝑚 𝛼,𝑅 

𝜕𝑅𝜕∆
−11

𝜕2𝜋𝑚 𝛼,𝑅 
𝜕𝛼𝜕∆

1122 − 12
2  

 
 
 

 (76) 

From 𝜋𝑚
𝑚  (R, α) as provided by (67),  

 

 

𝜕2𝜋𝑚  𝛼,𝑅 

𝜕𝑅𝜕∆
𝜕2𝜋𝑚  𝛼,𝑅 

𝜕𝛼𝜕∆  

 =

 

 

∆(𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 2𝑅𝛾∆)

4𝛼2

−
(𝑅)(𝛼𝛽 + 2𝑅𝛾∆ − 2𝛾𝐶𝑚 𝛼 + 𝛼𝛾𝐶𝑚

′ (𝛼)

4𝛼3  

    (77) 

 

We can obtain an expression for 
𝜕𝑅𝑚

𝜕∆
 by substituting (77) into (76) and solving as shown in 

(78). 

𝑑𝑅𝑚
𝑑∆

= −
 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆ 

16𝛼6(1122 − 12
2 )

(3𝛾𝐶𝑚 𝛼 
2 + 2𝛼 𝛼𝛽 + 2𝑅𝛾∆ 𝐶𝑚

,  𝛼 

+ 𝛼2𝛾𝐶𝑚
,  𝛼 2 +  𝛼𝛽 + 2𝑅𝛾∆  𝑅∆ − 𝛼2𝐶𝑚

,,  𝛼  

+ 𝐶𝑚 𝛼 (−2𝛼𝛽 − 5𝑅𝛾∆ + 𝛼𝛾(𝛼𝐶𝑚
,,  𝛼) − 𝛼𝐶𝑚

, (𝛼)))  

 

(78) 

Substituting 𝑅∆= 𝐶𝑚  𝛼 − 𝛼𝐶𝑚
′  𝛼  into (78) we have, 
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𝑑𝑅𝑚
𝑑∆

=
 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆ 

16𝛼5(1122 − 12
2 )

( 𝛼𝐶𝑚
′  𝛼 − 𝐶𝑚  𝛼   −𝛽 + 𝛾𝐶𝑚

′  𝛼  

+ 𝛼𝐶𝑚
′′  𝛼  𝛾𝐶𝑚 𝛼 + 𝛼 𝛽 − 2𝛾𝐶𝑚

′  𝛼   ) 

(79) 

The term  𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆  is positive if the optimal demand is positive. The preceding 

implies 𝛼𝛽 > 𝛾(𝐶𝑚 𝛼 − 𝑅∆). Considering 𝑅∆= 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼   from (63), 𝛼𝛽 >

𝛾(𝐶𝑚 𝛼 − 𝐶𝑚  𝛼 + 𝛼𝐶𝑚
′  𝛼 )  i.e 𝛽 > 𝛾𝐶𝑚

′ (𝛼). Therefore  𝛼𝐶𝑚
′  𝛼 − 𝐶𝑚  𝛼   −𝛽 +

𝛾𝐶𝑚
′  𝛼  > 0.   𝛾𝐶𝑚 𝛼 + 𝛼  𝛽 − 2𝛾𝐶𝑚

′  𝛼      > 0 since 𝛽 > 𝛾𝐶𝑚
′  𝛼  and 𝐶𝑚  𝛼 >

𝛼𝐶𝑚
′  𝛼 . Therefore, we have 

𝑑𝑅𝑚

𝑑∆
>0.  The result implies that the optimal investment in 

remanufacturability increases with cost savings for remanufacturing and is quite intuitive.  

Substituting (77) into (76) and solving, we obtain an expression 
𝑑𝛼𝑚

𝑑∆
 as shown in (80). 

𝑑𝛼𝑚
𝑑∆

= −
 𝛼𝛽 + 𝑅𝛾∆ − 𝛾𝐶𝑚  𝛼  

16𝛼5(1122 − 12
2 )

(∆ 𝛼𝛽 + 𝑅𝛾∆ − 𝛾𝐶𝑚 𝛼  + 4𝑅𝛼2𝐼′′  𝑅 ) 

 

(80) 

From (80) since 𝛼𝛽 − 𝛾𝐶𝑚 𝛼 + 𝑅𝛾∆>0, 
𝑑𝛼𝑚

𝑑∆
< 0. The result shows that the optimal product 

life decreases with the costs savings per remanufacturing and illustrates the conflict between 

a higher remanufacturability and a longer product life.  To analyze how an increase in Δ 

impacts the optimal demand for services, we can differentiate the expression for 𝛽 −

𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚  ,𝛼𝑚    from (74) with respect to Δ while noting that 𝛼𝑚  and Rm should be 

considered as functions of Δ as shown in (75). 
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𝑑(𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚  ,𝛼𝑚  )

𝑑∆

=
𝛾𝛼𝑚 (𝑅𝑚∆ + 𝛾

𝑑𝑅𝑚
𝑑∆

) +
𝑑𝛼𝑚
𝑑∆

γ(𝛼𝑚𝐶𝑚
′  𝛼𝑚 −𝐶𝑚 𝛼𝑚 + 𝑅∆))

4𝛼𝑚 2
 

(81) 

From (114), since 𝛼𝑚𝐶𝑚
′  𝛼𝑚 −𝐶𝑚 𝛼𝑚 + 𝑅𝑚∆ = 0 and 

𝑑𝑅𝑚

𝑑∆
> 0 from (79), the optimal 

demand for services 𝛽 − 𝛾𝑝 𝑤  𝑅𝑚 ,𝛼𝑚  ,𝛼𝑚   increases with Δ. 

4.4  Comparison of MDSC with CCSC when product life is a variable  

Given a constant product life, the traditional MDSC was inferior to CCSC with respect to 

total supply chain profits, remanufacturability as well as the price to the customers. 

Comparative analysis of MDSC with CCSC with variable product life can provide guidelines 

on relative benefit of coordination when a higher remanufacturability or a longer product life 

is preferred from the environmental standpoint.   

4.4.1 The Centrally Coordinated Supply Chain 

In this scenario, the manufacturer and the service provider are vertically integrated and the 

decisions are made by a central planner with the objective of maximizing the total supply 

chain profits.  The relevant decision variables for this scenario are the price per unit service 

p, the level of remanufacturability R and the product life α.  The central planner’s profit 

maximization problem is formulated by (82). 

𝑀𝑎𝑥
𝑝,𝛼,𝑅

 𝜋𝑐 =  𝛽 − 𝛾𝑝 −
𝛽 − 𝛾𝑝

𝛼
 𝐶𝑚 𝛼 − 𝑅∆ − 𝐼(𝑅) (82) 

Equations  (83), (84) and (85) provide the first order conditions for πc with respect to α, R 

and p.  
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𝜕𝜋𝑐
𝜕𝛼

= − 
𝛽 − 𝛾𝑝

𝛼2
  𝛼𝐶𝑚

,  𝛼 − 𝐶𝑚 𝛼 + 𝑅∆ = 0 (83) 

𝜕𝜋𝑐
𝜕𝑅

= ∆  
𝛽 − 𝛾𝑝

𝛼
 − 𝐼′ 𝑅 = 0 (84) 

𝜕𝜋𝑐
𝜕𝑝

= 𝛽 − 𝛾𝑝 +
𝛾(𝐶𝑚 𝛼 − 𝑅∆)

𝛼
 (85) 

From (83), similar to MDSC given the optimal remanufacturability Rm, the optimal product 

life αm is independent of the price p and the demand parameters β and γ.  This may be a result 

of modeling the variable cost of manufacturing as a function of α.  We will now derive 

sufficient conditions for the existence of a quasi concavity of πc.  To show that πc is quasi-

concave, it is sufficient to show that the hessian 𝐷2𝜋𝑐(𝑝,𝑅,𝛼) as shown by (86) is negative 

definite at any critical point.  By critical point, we refer to any point where the first order 

conditions are satisfied. 
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Considering the hessian (86), the sufficient conditions for πc to be concave at any critical 

point are 1) 2𝛼2𝐼′′ 𝑅 > 𝛾∆2 and 2) that |𝐷2𝜋𝑐 𝑝,𝑅,𝛼 | defined as the determinant of the 

hessian 𝐷2𝜋𝑐 𝑝,𝑅,𝛼  is less than zero.  Simplifying the above conditions as in MDSC, a 

sufficient condition for the quasiconcavity of πc  is that inequalities (87) and (88) are true  in 

the relevant range of R and α i. e. 0 ≤ 𝑅 < 1 and 𝛼𝑙 ≤ 𝛼. 
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∆2𝛽 − 𝛾∆2𝐶𝑚
′ (𝛼) − 𝛼𝐶𝑚 ′′ 𝛼  2𝛼2𝐼′′  𝑅 − 𝛾∆2 ) < 0 (87) 

2𝛼2𝐼′′  𝑅 − 𝛾∆2> 0   (88) 

Note that the quasi-concavity conditions for CCSC (87) and (88)  are relatively more 

restrictive than the corresponding conditions for MDSC.  Also the conditions imply that 𝜋𝑐   

would be quasi-concave if 𝐼′′  𝑅  is sufficiently large and maximum demand β is sufficiently 

small. 

4.4.2 Comparison between MDSC and CCSC 

PROPOSITION  2.  MDSC equilibrium has a lower remanufacturability, higher price per unit 

service and a greater product life compared to CCSC optimal solution. 

Previous articles have discussed the negative impact of double marginalization in 

decentralized supply chains such as reduced quality,  higher prices and reduced profits [26, 

27]. Conversely, Proposition 2 shows that the decentralized MDSC is superior to CCSC with 

respect to the product life. From an environmental standpoint given the higher price per unit 

service and the longer product life, it is possible that MDSC results in a lesser number of 

disposed products compared to CCSC.  An intuitive interpretation for Proposition 2 is that 

the double marginalization in MDSC leads to lower demand for services which is an 

incentive for reducing the investment in remanufacturing. In turn, the reduced 

remanufacturability increases the average cost of manufacturing/ remanufacturing Cm -R∆  

which is an incentive for a longer product life.  

 Proof: We will compare Rc and Rm , in the following steps. Step1:  We show that suppose the 

manufacturer in MDSC sets R = Rc instead of Rm, and then optimizes over product life and 
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wholesale price, the product life that maximizes his profit given R = Rc is 𝛼𝑐 .  Step 2: We 

show that given the manufacturer has set R = Rc and is utilizing the optimal 𝛼  and w given 

that R = Rc, the manufacturer can increase his profit by reducing R.  Given that 𝜋𝑚  is quasi-

concave, step 2 implies that Rm <Rc. 

Step 1: Since
𝜕2𝜋𝑐

𝜕𝑝2 =  −2𝛾, 𝜋𝑐  is concave with respect to p and we can solve  
𝜕𝜋𝑐

𝜕𝑝
 = 0 to obtain 

𝑝  𝑅,𝛼  the optimal price p for a given product life 𝛼 and remanufacturability R as shown in 

(89) (See Porteus [30] and Weng [36] for a similar approach). 

𝑝  𝑅,𝛼 =  
𝛼𝛽 + 𝐶𝑚(𝛼)𝛾 − 𝑅𝛾∆

2𝛼𝛾
 (89) 

Substituting (89) in the profit (82), we can obtain an expression for  𝜋𝑐 𝑅,𝛼  defined as the 

maximum CCSC profit that can be obtained by optimizing over price for a given R and α as 

shown in (90). 

𝜋𝑐 𝑅,𝛼 = 𝜋𝑐(𝑝  𝑅,𝛼  ,𝑅,𝛼) =
 𝛼𝛽 − 𝐶𝑚 𝛼 𝛾 + 𝑅𝛾∆ 2

4𝛼2𝛾
− 𝐼(𝑅) (90) 

The first order conditions for maximizing 𝜋𝑐 𝑅,𝛼  are given by (91) and (92). 

𝐼′ 𝑅𝑐 =
 𝛼𝑐 𝛽 − 𝐶𝑚 (𝛼𝑐)𝛾 + 𝑅𝑐𝛾∆ 

2𝛼𝑐2
 (91) 

𝐶𝑚 𝛼𝑐 = 𝛼𝐶𝑚
′  𝛼𝑐 + 𝑅𝑐∆  (92) 

                                                                          

Let us consider the manufacturer’s profit 𝜋𝑚  𝛼,𝑅  as given by (67). Suppose that the 

manufacturer utilizes the optimal remanufacturability of CCSC and sets R=Rc.. We define 



www.manaraa.com

57 

 

𝛼|𝑅=𝑅𝑐  as the optimal product life that maximizes 𝜋𝑚  𝛼,𝑅 given that R=Rc.. The first order 

condition satisfied by  𝛼|𝑅=𝑅𝑐   is given by (93). 

𝜕𝜋𝑚 (𝑅,𝛼)|𝑅 = 𝑅𝑐
𝜕𝛼

=
 𝛼|𝑅=𝑅𝑐𝛽 − 𝐶𝑚 𝛼|𝑅=𝑅𝑐 𝛾 + 𝑅𝑐𝛾∆ (𝐶𝑚 𝛼|𝑅=𝑅𝑐 − 𝛼𝐶𝑚

′  𝛼|𝑅=𝑅𝑐 − 𝑅𝑐∆) )

4𝛼|𝑅=𝑅𝑐
3

= 0 

(93) 

Suppose that the term  𝛼|𝑅=𝑅𝑐𝛽 − 𝐶𝑚 𝛼|𝑅=𝑅𝑐 𝛾 + 𝑅𝑐𝛾∆ = 0  in (93), then considering (67), 

the optimal profit MDSC given R= Rc  and 𝛼 = 𝛼|𝑅=𝑅𝑐  is –I(Rc). However, if the 

manufacturer sets R=Rc and α=αc, then since  𝛼c𝛽 − 𝐶𝑚  𝛼c 𝛾 + 𝑅𝑐𝛾∆ > 0 from (67), the 

optimal profit is greater than –I(Rc) contradicting that 𝛼|𝑅=𝑅𝑐 is the optimal product life in 

MDSC given 𝑅 = 𝑅𝑐 . Hence,  𝛼|𝑅=𝑅𝑐𝛽 − 𝐶𝑚 𝛼|𝑅=𝑅𝑐 𝛾 + 𝑅𝑐𝛾∆ ≠ 0. Therefore, from (93), 

the optimal 𝛼|𝑅=𝑅𝑐 in MDSC satisfies (94).    

𝐶𝑚 𝛼|𝑅=𝑅𝑐 − 𝛼|𝑅=𝑅𝑐𝐶𝑚
′  𝛼|𝑅=𝑅𝑐 − 𝑅𝑐∆= 0 (94) 

Comparing (92) and (94), 𝛼|𝑅=𝑅𝑐 = 𝛼𝑐 .  

Step 2: the rate of change of 𝜋𝑚 (𝑅,𝛼) with respect to R given that 𝑅 = 𝑅𝑐  and 𝛼 = 𝛼|𝑅=𝑅𝑐  

can be found by differentiating 𝜋𝑚  𝛼,𝑅  given by (67) with respect to α as shown in (95). 

𝜕𝜋𝑚 (𝑅,𝛼)|𝑅 = 𝑅𝑐 ,𝛼|𝑅=𝑅𝑐

𝜕𝑅
=
∆ 𝛼𝑐)𝛽 − 𝐶𝑚 (𝛼𝑐)𝛾 + 𝑅𝑐𝛾∆ 

4𝛼𝑐2
− 𝐼′(𝑅𝑐) (95) 

Substituting for 𝐼′(𝑅𝑐) in (91) from (95),  
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𝜕𝜋𝑚 (𝑅,𝛼)|𝑅 = 𝑅𝑐 ,𝛼|𝑅=𝑅𝑐

𝜕𝑅
= −

∆ 𝛼𝑐)𝛽 − 𝐶𝑚(𝛼𝑐)𝛾 + 𝑅𝑐𝛾∆ 

4𝛼𝑐2
< 0 (96) 

Equation (96), implies that if the manufacturer sets R=Rc and optimizes over α, then he can 

gain profit by decreasing R. Given the manufacturer’s profit is quasi-concave 𝑅𝑚 < 𝑅𝑐 .   

To compare αm and αc, note that from (92) and (94) the αm and αc are related to the 

remanufacturabilities 𝑅𝑚  and 𝑅𝑐   respectively via the same implicit function defined 

by 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼 − 𝑅∆= 0. We can use the implicit function theorem to analyze how a 

change in the remanufacturability affects the optimal product life. Let 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼 −

𝑅∆= G α, R = 0. 

𝑑𝛼

𝑑𝑅
=
−
𝜕𝐺
𝜕𝑅
𝜕𝐺
𝜕𝛼

= −
∆

𝛼𝐶𝑚′′  𝛼 
< 0 (97) 

Given that αm and αc are both related to Rm and Rc respectively via the same implicit function 

defined by G α, R = 𝐶𝑚 𝛼 − 𝛼𝐶𝑚
′  𝛼 − 𝑅∆= 0 ,  

𝑑𝛼

𝑑𝑅
< 0  from (97) and  𝑅𝑚 < 𝑅𝑐  ,  we 

have 𝛼𝑚 > 𝛼𝑐 .  Hence, MDSC is superior with respect to CCSC with respect to the product 

life although it results in lesser remanufacturing.   

We will now compare the optimal prices in MDSC and CCSC.  Note that the optimal supply 

chain profit in CCSC πc(αc, Rc) is greater than the manufacturer’s profit in MDSC πm(αm, Rm) 

by definition and considering that the CCSC has a unique optimal solution .  From (90) and 

(67),  
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𝜋𝑐 𝑅𝑐 ,𝛼𝑐 =
 𝛼𝑐𝛽 − 𝛾𝐶𝑚(𝛼𝑐) + 𝛾𝑅𝑐∆ 

2

4𝛼𝑐2𝛾
− 𝐼 𝑅𝑐 > 𝜋𝑚  𝑅𝑚 ,𝛼𝑚  

=
 𝛼𝑚𝛽 − 𝐶𝑚  𝛼𝑚 𝛾 + 𝑅𝑚𝛾∆ 

2

8𝛼𝑚2𝛾
− 𝐼(𝑅𝑚) 

(98) 

Since 𝑅𝑐 > 𝑅𝑚 , 𝐼′ 𝑅𝑐 > 𝐼′ 𝑅𝑚 . Therefore, we have 

 𝛼𝑐𝛽 − 𝛾𝐶𝑚(𝛼𝑐) + 𝛾𝑅𝑐∆ 
2

4𝛼𝑐2𝛾
>
 𝛼𝑚𝛽 − 𝐶𝑚 𝛼𝑚 𝛾 + 𝑅𝑚𝛾∆ 

2

8𝛼𝑚 2𝛾
 (99) 

Taking the square root of (99),  

 𝛼𝑐𝛽 − 𝛾𝐶𝑚(𝛼𝑐) + 𝛾𝑅𝑐∆ 

2𝛼𝑐
>
 𝛼𝑚𝛽 − 𝐶𝑚 𝛼𝑚  𝛾 + 𝑅𝑚𝛾∆ 

2 2𝛼𝑚
 

 

(100) 

From (64), the optimal demand in MDSC is given by   

𝛽 − 𝛾𝑝𝑚 =
𝛼𝑚𝛽 − 𝛾𝐶𝑚(𝛼𝑚) + 𝛾𝑅𝑚∆

4𝛼𝑚
 

 

(101) 

From (89),  

𝛽 − 𝛾𝑝𝑐 =
𝛼𝑐𝛽 − 𝛾𝐶𝑚(𝛼𝑐) + 𝛾𝑅𝑐∆

2𝛼𝑐
 (102) 

 

Considering (100) and the expressions for the optimal demands (101) and(102) 𝛽 − 𝛾𝑝𝑐 >

𝛽 − 𝛾𝑝𝑚  and  𝑝𝑚 > 𝑝𝑐 .  In summary, given that the quasi-concavity conditions for 𝜋𝑐  are 

met the CCSC will have a lower price per unit service, higher remanufacturability and lower 

product life as compared to MDSC.   
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4.5 Numerical Examples 

We now provide a numerical example to illustrate the analytical insights and make further 

observations comparing MDSC and CCSC optimal solution. We assume that 𝐼 𝑅 = 𝑘(𝑅2)  

where k represents the investment required for achieving a remanufacturability of 1.  Similar 

quadratic investment functions have been frequently used in the literature to model 

investments in setup, quality improvement and production costs savings[27, 33].    

We assume 𝐶𝑚  𝛼 = 𝐶𝑚0 + 𝑠𝛼2 to relate the product life and the manufacturing cost.  Here, 

𝐶𝑚0 represents manufacturing cost of long life components while 𝑠𝛼2 represents the 

manufacturing cost of short life components that have the most impact on the product life. 

We assumed hypothetical data for the various parameters. The parameter values utilized are 

as follows: k = 1000 000, β=8 000 000, γ = 2 500 000, Cm0 =12 000.  We chose the 

parameters ∆ and s for sensitivity analysis to observe how the equilibrium varies with 

conditions conducive for remanufacturing or a longer product life.  We will first discuss the 

sensitivity with respect to ∆ followed by the sensitivity for s.  

We varied ∆ from 2000 to 6775 while fixing s = 0.00008. Figures 8, 9  and 10 show the 

variation of R, p and α with cost savings per remanufactured product ∆. We observe that as 

analytically proved, Rm<Rc, pm > pc and αm > αc.  In addition, CCSC optimal solution is 

significantly more sensitive to ∆ compared to MDSC equilibrium particularly at higher 

values of ∆.   As a result, when ∆ is high, the optimal CCSC solution has a substantially 

higher demand per services, higher remanufacturability and a lower product life compared to 

MDSC.  An intuitive interpretation for this observation is as follows, in both MDSC and 
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CCSC, R is an increasing function of ∆(𝛽 − 𝛾𝑝) 𝛼 .  Hence, if other variables are held 

constant, the sensitivity of R with ∆ depends on the volume of products (𝛽 − 𝛾𝑝) 𝛼 . Given 

that price and the product life are lower, the optimal volume of products is higher in CCSC. 

The higher volume of products over which the cost savings ∆ can be achieved in CCSC 

explains the higher sensitivity to  ∆ to some extent.   

A key objective of comparative analysis between MDSC and CCSC is to identify under what 

conditions is it more beneficial to coordinate MDSC.  A measure of the benefit due to 

coordination is the percent gain in total supply chain profits δ defined as 100(𝜋𝑐−𝜋𝑚 ) 𝜋𝑚 .  

Since 𝜋𝑚<𝜋𝑐  , δ>0.   Figure 11 shows the variation of δ with ∆. We observe that δ is 

nonlinearly increasing with ∆ suggesting that the benefit due to coordination is the highest 

when the conditions are favorable for remanufacturing. Note that the increase in δ for MDSC 

with ∆ was analytically shown by
 
(48) when α was a parameter and I(R) =kR

2
.   A possible 

rationale for this observation is as follows.  An increase in the cost savings ∆ would be 

applicable to a greater volume of products in CCSC justifying higher investment in 

remanufacturability compared to MDSC.  In turn, the higher remanufacturability leads to 

greater decrease in the product life and the price. Given the higher price per service and 

lower volume of products in MDSC due to double marginalization, these benefits of 

increasing the remanufacturability are realized to a lesser extent. Also note that the observed 

sensitivity of CCSC to ∆ is higher than in the example in Chapter 3 where the product life 

was fixed at the optimal product life when ∆ = 2000. Perhaps, the option to reduce product 

life with ∆ is why there is a greater increase in remanufacturability with increase in ∆. 
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Figure 8 Variation of the Remanufacturability with Δ when α is a Variable 

  

 

Figure 9 Variation of Price p with Δ when α is Variable 
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Figure 10 Variation of Product Life α with Δ 

 

 

 

Figure 11 Variation of Percent Profit Gain δ with ∆ 
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Figure 14 shows the variation of the remanufacturabilities with increase in s. We observe that 

CCSC remanufacturability is increasing with s when s is small and is decreasing with s when 

s is large.  As we discussed earlier, the optimal remanufacturability is a function of  

∆(𝛽 − 𝛾𝑝𝑚 ) 𝛼𝑚 , where (𝛽 − 𝛾𝑝𝑚)/𝛼 is the optimal demand for products.  A possible 

explanation for this observation is as follows, an increase in s causes two conflicting effects 

impacting the optimal demand of products. First, an increase in s represent longer product 

life related cost and can lead to decreased product life.  Ceteris paribus, decreased product 

life leads to increased volume of products. Conversely, since increase in s represents higher 

manufacturing costs, it can lead to a decreased demand for services and products if 𝛼 is 

constant.  The final sign of 𝑑𝑅 𝑑𝑠  depends on which of the two opposing effects: 1) the 

decrease in demand of services and 2) decreased product life has a greater impact on the 

optimal volume of products when all decision variables are jointly optimized.   From 

comparative statics analysis, we can derive the specific conditions under which the Rc 

increases or decreases with product life as shown in (103) and (104).  From (104) we can 

observe that Rc decreases with s if the optimal demand for services is sufficiently small.  

𝑑𝑅𝑐
𝑑𝑠

> 0 𝑖𝑓  𝛼𝛽 − 𝐶𝑚0𝛾 − 𝛾𝑠𝛼2 + 𝑅𝛾∆ > 𝑛𝛾 𝐶𝑚0 − 𝑅∆  (103) 

                    

𝑑𝑅𝑐
𝑑𝑠

≤ 𝑖𝑓  𝛼𝛽 − 𝐶𝑚0𝛾 − 𝛾𝑠𝛼2 + 𝑅𝛾∆ ≤ 𝑛𝛾 𝐶𝑚0 − 𝑅∆  

(104) 
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Figure 12 Variation of Product Life α with Parameter s  

 

 

Figure 13 Variation of Price p with Parameter s 
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Figure 14  Variation of the Remanufacturability R with Parameter s 

Figure 15 shows the variation of the percent profit gain δ with increase in s. We can observe 
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Figure 15  Variation of the Percent Profit Gain via Coordination δ with the Parameter s 
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5.  Impact of Environmental Legislation 

In this chapter, we examine how a specific type of environmental legislation that is aimed at 

reducing the waste impacts MDSC and CCSC.  Specifically, we consider the scenario where 

the government imposes an environmental fee σ (dollars/product) for each product that is 

disposed into the waste stream. The fee σ can be utilized for various purposes such as 

recycling, environmental disposal and consumer education.  This fee structure is influenced 

by the recent e-waste legislation in Maine where the producers pay for recycling of their 

products[20].  

5. 1 Analysis with Product life as a Parameter 

Recall that the number of disposed products is 1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼.  Given an environmental 

fee of σ, the total cost due to the environmental fee is 𝜎 1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼.  Considering σ, 

the manufacturer’s profit maximization problem (5) is modified as shown in (105). 

𝑀𝑎𝑥
𝑤,𝑅

 πm
m =

 αβ − wγ 

2𝛼2
 𝑤 − 𝐶𝑚 − σ + 𝑅(∆ + σ ) − 𝐼(𝑅) (105) 

 

In this case, the manufactures objective would be concave and we would have a unique 

Stackelberg equilibrium if  

4𝛼2𝐼′′  𝑅∗ > 𝛾(∆ + σ)2 (106) 
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PROPOSITION  3. When product life is constant, the equilibrium remanufacturability in MDSC 

decreases with the environmental fee σ if the marginal demand γ is sufficiently high. When γ 

is sufficiently low, the remanufacturability in MDSC increases with σ. 

One of the objectives of legislation imposing the environmental fee σ is to encourage product 

reuse. However, Proposition 3 shows when the marginal demand is high, the environmental 

fee leads to the undesirable outcome of reduced investment in remanufacturing. A possible 

explanation for this result is that when γ is relatively high, the optimal demand for services 

and products is relatively low implying a lesser incentive to invest in remanufacturability. 

Under the circumstances, given an increase in σ, it may be more economical to reduce the 

number of disposed products  1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼 via reducing price as opposed to increasing 

the remanufacturability.   

 Proof:  Equation(14) shows  𝐷2𝜋𝑚
𝑚 , defined as the hessian matrix for 𝜋𝑚

𝑚  with respect to w 

and R.  

𝐷2𝜋𝑚
𝑚 =  

−
𝛾

𝛼2
−
𝛾(∆ + 𝜎)

2𝛼2

−
𝛾(∆ + 𝜎)

2𝛼2
−𝐼′′(𝑅)

  (107) 

                                                                                           

The implicit function theorem is applicable if we have an interior equilibrium i.e. the first 

order conditions are met and  𝐷2𝜋𝑚
𝑚  ≠ 0.  Here,   𝐷2𝜋𝑚

𝑚   denotes the determinant of the 

hessian 𝐷2𝜋𝑚 ..
𝑚  From the implicit function theorem we have, 
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𝜕𝑤𝑚

𝜕𝜎
𝜕𝑅𝑚
𝜕𝜎

 =

 

 

𝜕2𝜋𝑚
𝑚

𝜕𝑤2

𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕𝑅
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝑤

𝜕2𝜋𝑚
𝑚

𝜕𝑅2  

 

−1

 

 
−
𝜕2𝜋𝑚

𝑚

𝜕𝑤𝜕𝜎

−
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝜎 

  

Where, 

(108) 

 

 

𝜕2𝜋𝑚
𝑚

𝜕𝑤𝜕𝜎
𝜕2𝜋𝑚

𝑚

𝜕𝑅𝜕𝜎 

 =  

(𝑅 − 1)

2𝛼2

𝛼𝛽 − 𝑤𝛾

2𝛼2

    (109) 

 

Substituting (107) and (109) in (108) and solving, we obtain   

𝑑𝑅𝑚
𝑑𝜎

=
2𝛼𝛽 − 2𝑤𝛾 − 𝛾 1 − 𝑅 (∆ + 𝜎)

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾 𝜎 + ∆ 2
 (110) 

 

Solving
𝜕𝜋𝑚

𝑚

𝜕𝑤
= 0, we obtain 

𝑤𝑚 =
𝛼𝛽 + 𝛾𝐶𝑚 − 𝑅𝑚𝛾∆ − γσ(𝑅𝑚 − 1)

2𝛾
 (111) 

Substituting (111) into (110) and simplifying,  

𝑑𝑅𝑚
𝑑𝜎

=
(𝛼𝛽 − 𝐶𝑚𝛾 + 𝑅𝑚𝛾∆ − γσ 1 − 𝑅𝑚  ) − γ 1 − 𝑅𝑚 (∆ + 𝜎)

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾 𝜎 + ∆ 2
 (112) 

From (112),  
𝑑𝑅𝑚

𝑑𝜎
< 0  if γ is sufficiently high since 𝑅𝑚  decreases with γ from (17).  

𝑑𝑅𝑚

𝑑𝜎
≥ 0 

otherwise.  Substituting (107) and (109) in (108) and solving, we obtain   

𝑑𝑤𝑚

𝑑𝜎
=

2(1 − 𝑅)𝛼2𝐼′′  𝑅𝑚 −  𝛼𝛽 − 𝑤𝛾 (𝜎 + ∆)

4𝛼2𝐼′′ (𝑅𝑚) − 𝛾 ∆ + 𝜎 2
 (113) 

Substituting the first order condition (111) into (113) we obtain,  
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𝑑𝑤𝑚

𝑑𝜎
=

4 1 − 𝑅 𝛼2𝐼′′  𝑅𝑚 − (𝛼𝛽 − 𝐶𝑚𝛾 + 𝑅𝑚𝛾∆ − γσ 1 − 𝑅𝑚  )(𝜎 + ∆)

8𝛼2𝐼′′ (𝑅𝑚) − 2𝛾 ∆ + 𝜎 2
 (114) 

From (114), 
𝑑𝑤𝑚

𝑑𝜎
> 0 if γ is sufficiently high otherwise 

𝑑𝑤𝑚

𝑑𝜎
< 0.   An intuitive interpretation 

for this result is that when γ is sufficiently low, the demand for services and products is high 

and there is a greater incentive for investment in remanufacturing. Under the circumstances 

reducing the wholesale price to support remanufacturing may be beneficial. Note that 

considering the service provider’s best response function (3) and given a constant product 

life 
𝑑𝑝𝑚

𝑑𝜎
> 0 if 

𝑑𝑤𝑚

𝑑𝜎
> 0 and 

𝑑𝑝𝑚

𝑑𝜎
≤ 0 if  

𝑑𝑤𝑚

𝑑𝜎
≤ 0. 

We will now illustrate the above results with a numerical example. The parameters for this 

example are similar to those for section 4. The specific values are k = 1 000 000, Cm = 

23737, γ = 2 500 000, 𝛼 = 12113 and ∆= 5000 .   We then varied the environmental fee σ 

between 0 and 800 for maximum demand parameter β values 5 000 000 and 8 000 000.   

 shows  the variation of R and p with σ when β is 5 000 000.  We observe that an increase in 

σ is resulting in a decrease in R and an increase in p.  A possible rationale for this 

observation is that, when α is low, the optimal demand for services is low. Under the 

circumstances, increasing p is more economical as a strategy to reduce the number of 

disposed products  1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼 compared to increasing the R.  
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Figure 16 Variation of R with σ under MDSC and CCSC with β = 5 000 000 

 

         

 

Figure 17 Variation of p with σ under MDSC and CCSC with β = 5 000 000 

Figure 18 shows the variation of the number of disposed products  1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼 with 

σ.  In this case the observed decrease in the number of products disposed is caused by an 

increase in price although the R decreased.     
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Figure 18  Variation of Products Disposed with σ under MDSC and CCSC with β= 5 

000 000 

 

Figure 20 and Figure 20 shows the variation of R and p with σ when β is 8 000 000.  We 

observe that an increase in σ is resulting in increased R as well as p.  The variation of the 

number of number of disposed products  1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼 with σ is shown in Figure 21. In 

this case, the price p is relatively incentive σ and the decrease in the number of products 

disposed is primarily due to the increase in R.   

 
Figure 19 Variation of R with σ under MDSC and CCSC with β = 8 000 000 
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Figure 20 Variation of p with σ under MDSC and CCSC with β = 8 000 000 

 

 
Figure 21 Variation of Products Disposed with σ under MDSC and CCSC with β = 8 

000 000 

5.2 Numerical Example with Product Life as a Variable  

In this section, we will provide a couple of illustrative numerical examples to observe the 

impact of the environmental fee when product life is a variable. Given the environmental 

fee σ, the manufacturer’s profit maximization problem considering the service provider’s 

best response function is provided by (115).   

𝑀𝑎𝑥
𝑤,𝑅,𝛼

 𝜋𝑚 =
 𝛽 − 𝛾𝑝(𝑤,𝛼) 

𝛼
 𝑤 − 𝐶𝑚 𝛼 + σ + 𝑅(∆ + σ) − 𝐼(𝑅) (115) 
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The sufficient conditions for the quasiconcavity of the manufacturer’s profit πm
m  are provided 

by Inequalities (116) and (106).  

(∆ + σ)2𝛽 − 𝛾(∆ + σ)2𝐶𝑚
′ (𝛼) − 𝛼𝐶𝑚 ′′ 𝛼  4𝛼2𝐼′′  𝑅 − 𝛾(∆ + σ)2 )  

< 0                                                       
(116) 

We assume that 𝐼 𝑅 = 𝑘(𝑅2)  and 𝐶𝑚  𝛼 = 𝐶𝑚0 + 𝑠𝛼2. The parameters for this example 

are based on the hypothetical data assumed in the example 1 of Section 6.4. The specific 

parameter values are: k = 1000 000, β=800 0000, γ = 2 500 000, Cm0 =12 000 and α = 12113. 

Figure 22, Figure 23 and Figure 24 show the variation of R, α, and p with the environmental 

fee σ. We can observe that in CCSC, R is increasing with σ while α and p are decreasing with 

σ.  In this case, reducing the number of disposed products  1 − 𝑅 (𝛽 − 𝛾𝑝)/𝛼 via increasing 

the remanufacturability is more economical than the alternative strategies of increasing the 

price or the product life.  Furthermore, the product life and the price are decreased such that 

the cost savings due to increased R are applicable to a greater volume of products(𝛽 − 𝛾𝑝)/

𝛼.    

In MDSC, the R is marginally increasing with σ while α and p are increasing with σ.  A 

possible rationale for the observation is that in MDSC, the demand for products is low due to 

the higher price and product life.  Under the circumstances increasing the product life is more 

appropriate as a strategy to reduce waste than in CCSC where the demand for products is 

higher. We note the preceding difference in the variation of α with the environmental fee σ in 

CCSC and MDSC may be a result of the specific parameters assumed in this example. 
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Figure 22 Variation of R with σ under MDSC and CCSC when α is Variable 

 

 

Figure 23 Variation of α with σ under MDSC and CCSC 

 

Figure 24 Variation of p with σ under MDSC and CCSC when α is Variable 
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Figure 25 shows the variation of the number of products disposed in MDSC and CCSC with 

σ.  We can observe that CCSC has higher number of disposed products compared to MDSC 

although it has a higher R because of the lower α and p. Also, there is a greater decrease in 

the number of disposed products with σ in CCSC. 

 

Figure 25 Variation of the Number of Products Disposed with σ under CCSC and 

MDSC when α = 12113 
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6.  The Service Provider Driven Supply Chain (SPDSC) 

In recent years, the service provider driven supply chain (SPDSC) has gained relevance as 

service providers are becoming increasingly powerful by organization of multiple service 

centers into service provider chains.  For example, large service provider chains such as 

Fedex Kinkos and Staples are likely to have a considerably high supply chain power. 

Although retailers and service providers are becoming more dominant relative to the 

manufacturer, only a small minority of papers in the supply chain literature have considered a 

dominant downstream supply chain member [12, 13, 21].   

In this study, we utilize the Stackelberg game with the Service provider as the leader and the 

manufacturer as the follower to model this scenario. However, unlike the case of MDSC, we 

cannot obtain reasonable equilibrium if we represent the strategies of the manufacturer and 

the service provider in terms of wholesale price w and price per unit service p alone. The 

difficulty in doing so is that, if the service provider first decides the price p as the Stackelberg 

leader, the manufacturer as the follower can charge a large enough wholesale price to make 

the service provider’s margin and thus profit zero.  To overcome this issue, vertical supply 

chain articles using Stackelberg game model with the retailer as the leader have utilized 

margins instead of the prices as the player’s strategies [12, 26].  These margins can either be 

absolute margins in dollars or a percentage margin. Given that both absolute and percentage 

margins are equally possible in practice, we chose absolute margins as described in [12, 13, 

26].  

Kadiyali et al [37] tested the margins predicted by game theoretic models of vertical supply 

chains such as the cournot model,  the manufacturer leader Stackelberg model and the service 
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provider leader Stackelberg  model. The theoretical models tested were based upon Choi’s  

model [29] of two competing manufacturers and a single retailer while the empirical data 

used was for two products orange juice and tuna. The article found that the retailer 

Stackelberg model with absolute margins fit the data better than Cournot game or the 

manufacturer Stackelberg game.  Additionally, the observed percentage of the retailer profits 

(around 60%) was much higher than that predicted by the manufacturer Stackelberg model.  

These results further support use of margins instead of prices as the player’s strategy when a 

downstream supply chain member is the leader.   

A question regarding the practical relevance of SPDSC is, whether the service provider’s 

pricing strategies can influence the manufacturer’s technology investment as implied by 

SPDSC.  While formal empirical research in this area is scarce, anecdotal evidence from 

trade journals suggests that in the retailer-manufacturer supply chain, retailer’s pricing could 

impact the manufacturer’s technologies.  A news article comments “Wal-Mart is pushing the 

RFID technology on the idea it will increase efficiency and eventually save everyone money 

-- manufacturers as well as Wal-Mart. The suppliers have had to bear the cost of buying 

hardware -- readers, transponders, antennas -- and computer software to track and analyze the 

data” [7]. In a similar fashion, perhaps powerful service providers may influence the 

manufacturer’s investments in cost saving technology.  

We will now discuss the solution of SPDSC model where we utilize the service provider 

leader Stackelberg game as an initial benchmark for the supply chain behavior when the 

service provider dominates the pricing game.  
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6.1 Stackelberg Game Formulation of SPDSC  

In this game, the service provider (leader) first decides her absolute margin per unit service 

g= p-w/α. The manufacturer being the follower accepts the service provider’s margin and 

decides the wholesale price w and the remanufacturability R that maximize his profits.  In 

this case, determining the wholesale price is equivalent to deciding the price per unit service 

given p= g+w/α.  

 As in the literature, to determine the Stackelberg equilibrium, we first characterize the 

manufacturer’s reaction function i.e., the wholesale price w(g) and remanufacturability R(g) 

that maximize his profits given the service providers margin g. We then determine the 

optimal gsp that maximizes the service provider’s profit while considering w(g). Note given 

that the reaction function w(g), the reaction function R(g) is irrelevant to the service 

provider’s profit and hence she ignores it in her profit maximization. The description of this 

SC is summarized in Figure 26. 

.In what follows, we will derive the equilibrium conditions which will form the basis for 

comparing the different SC.  In addition, we will derive the conditions for the concavity of 

the manufacturer’s and service provider’s objectives which are sufficient conditions for 

existence of the reaction function and the uniqueness of equilibrium respectively[31]. 
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Figure 26 Service Provider Driven Supply Chain (SPDSC) 

The profit maximization problem for the manufacturer is given by (117).  Here 

))((



w

g   is the demand for services given the service provider’s margin g and 

wholesale price w. 

 
(117) 

                 

The first derivatives of the manufacturer’s profits are given by (118) and (119). The 

optimality conditions for the manufacturer are found by equating the first derivatives to zero. 
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The Hessian matrix of the manufacturer’s profit is  
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From Hessian (120), the manufacturer’s objective is strictly concave if  

𝐼′′  𝑅 >
𝛾∆2

4𝛼2
 (121) 

Considering, (121), service providers profit is concave if the curvature I”(R) of the 

investment function I(R) is relatively large. A non concave objective function may result in a 

reaction function that is not differentiable or in worst case may not exist (several points have 

the same profit). The preceding makes the leaders optimization very complicated. Hence, 

throughout this paper we will only consider the case when inequality (121) is true. We will 

now characterize the manufacturer’s reaction functions that are necessary for the service 

provider’s optimization. 

Given that Inequality (121) is satisfied and assuming there exist w and R such that the first 

derivatives given by  (118) and (119) are zero (i.e. assuming that we have an interior 
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solution) 
g
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are given by the unique solution of  (122) according to the 

implicit function theorem (see [31, 32] for the statement of implicit function theorem).  The 

resulting expressions for 
g

gw



 )(
 and 

g
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 )(
 are given by (125) and (126). 
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Solving (124), 
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(126) 

      

From (126), we can observe that the manufacturer decreases the remanufacturability with 

increase in service provider’s margin g.  The manufacturer’s reaction function with respect to 

w is more complicated.  If )( spRI   is sufficiently high, then he decreases w with increase in g 

while he would increase w with increase in g if )( spRI  is sufficiently low.  Note that for the 

manufacturer, deciding the wholesale price w is equivalent to choosing the price per service p 

as the service provider has already specified her margin g.  Specifically, we have that  



w
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(129) 

                            

From (129) we can infer that an increase in the service provider’s margin g would lead to an 

increase in the price to the customers as far as manufacturer’s reaction is concerned. The 

service provider being the leader chooses the optimal margin g that maximizes her profit as 

given by. 
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Equations (131) and  (132) provide the first derivatives of the service provider’s objective. 
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In what follows, we derive conditions for the concavity of the service provider’s objective 

function which is a sufficient condition for the existence of a unique Stackelberg equilibrium. 

Substituting (129) into (131), 
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Differentiating Equation (132) with respect to g we obtain,    
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Substituting (126) into (134), 

322

323

22

2

)))((2(

))((

))((2

))((

gRI

gRI

gRI

gRI

g 




















 

(135) 

The first term of the RHS of (133) is negative since 1
)(
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=

g

gpsp



 )(
 which we already 

showed as positive.  From (135) the second term of (133) is negative if 0)(  RI  as
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)(
2 2

2

RI 




 . Hence, the service providers objective function is concave and there exists a 

unique Stackelberg equilibrium if 0)(  RI  and )(
2 2

2

RI 




 . In this case, the optimal 

spsp gw , and spR satisfied at the equilibrium are provided by equating the first derivatives 

(118), (119) and (132) to zero. 

6.2 Comparison of the Remanufacturabilities and Prices in SPDSC and MDSC 

PROPOSITION  4. When product life is constant, MDSC has a lower remanufacturability and 

higher price per unit service to the customers compared to SPDSC. 

Proposition 4 suggests that SPDSC should be encouraged if a greater level of 

remanufacturing and lower price per unit service to the customers are desired.  An 

interpretation for the proposition is as follows. The service provider being the follower in 

MDSC has no incentive to change her reaction function from the case when there is no 

remanufacturing. Hence, only the manufacturer who is the leader reduces his wholesale price 

from the case when there is no remanufacturing.  In SPDSC, the follower (manufacturer) 

considers the cost savings from remanufacturing and chooses his reaction function so as to 

realize a greater demand for products and cost savings from remanufacturing. The service 

provider being the leader chooses his margin considering the manufacturer’s reaction. In this 

sense, unlike in MDSC, both the supply chain members consider the cost savings due to 

remanufacturing in their profit maximization in SPDSC 
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Proof: We will first show that the optimal remanufacturability in MDSC mR is less than the 

optimal remanufacturability in SPDSC spR .  We will then 𝑅𝑚<Rsp  to show that 𝑝𝑚>psp  .  Let 

us first consider the case of SPDSC.  Equating the first derivative (132) to zero, 

0
))((2

))((
)

)(
(

22

2











gRI

gRI
gg

gw

g

sp

sp











 

(136) 

  Setting the first order condition (118) to zero we obtain, 
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 Substituting (137) into (136), 
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Equating the first derivative (119) to zero, we have 
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Substituting (137) into (141), 
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Substituting (140) into (142) and solving for )( spRI  , we obtain 
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Now, let us consider manufacturer’s profit in MDSC m if the remanufacturability R is set to

spR  Then equating the first derivative (7) to zero and solving for w, the optimal wholesale 

price *| spRR
w


satisfies,    
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The rate of change of profit with increase in R when at spRR  and 
spRRw | is obtained by 

substituting the value of *| spRR
w


 from into the first derivative (8),  
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Substituting the value of )( spRI  from (144) into (146)    



www.manaraa.com

89 

 

))(4(4

)(

222

3

|, **
sp

spm

RRwR

m
m

RI

RC

R
spm










 


 

(147) 

)(   spm RC > 0 if the optimal demand in SPDSC is greater than zero. Since 

)(4 22
spRI   < 0 by assumption about concavity, from (147), 0





R

m  at spRR   and 

*| mRR
w


. Therefore, if we set spRR  in MDSC, the manufacturer can increase his profits by 

decreasing R. However, as m is a convex function of R and w, spm RR  . 

We will now utilize spm RR   to prove that the equilibrium price in MDSC p is greater than 

or equal to the optimal price in SPDSC spp . The price in SPDSC


sp
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Substituting for the spw from (137) and g from (140). 
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 From (10) and the service provider’s best response function (3) 
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From (148) and (149), 
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The first term of the numerator of (150), )(   mm RC  is positive if the optimal 

demand in MDSC is positive. The second term is positive since spm RR  . Hence, msp pp   

. The above result shows that under some general investment functions I(R) and with linear 

demand, SPDSC leads to a higher remanufacturability, higher number of products (lower 

price) and greater quantities of remanufactured products as compared to MDSC.   We will 

now compare the remanufacturabilities and prices in SPDSC and CCSC. 

6.3 Comparison between SPDSC and CCSC. 

In this section, we show that the optimal remanufacturability in SPDSC spR is less than the 

optimal remanufacturability in CCSC cR . Suppose, instead of the optimal Rc,  we set the 

remanufacturability at spRR   in CCSC and then find the best price p given that spRR   by 

setting the first derivative given by (35) to zero,  
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Then, the rate of change of profit πc with increase in R at spRR   and *| spRRp   is given by 

equating the first derivative (36) to zero and substituting for *| spRR
p


 from (151) 
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Substituting the value of )( spRI   from (142) into (152), 



www.manaraa.com

91 

 





2** |,

g

R
spsp RRpRR

c 








 
(153) 

Therefore, from (153) if spRR  in CCSC, we can increase the total profit c  by increasing 

R. However as c is a concave function of R and p, spc RR  . We will now show that the 

optimal price in SPDSC 
spp is greater than the optimal price in CCSC cp .   Considering 

(137) and (35),  
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From (156) 0 spc pp  since 0 csp RR .  

The above results show that the lack of coordination (Double marginalization) leads to a 

higher price for the manufacturer and lower level of remanufacturing when service provider 

is the Stackelberg leader.  The optimal remanufacturability depends optimal number of 

products and the cost saving due to remanufacturing.  One interpretation of this proposition 

is that the double marginalization in this decentralized SC leads to decreased demand and 

thus a lesser incentive to invest in remanufacturing. 
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We  will show that the total SC profit of SPDSC is higher than that of MDSC. 

Proof: We will provide the proof as Lemma 1 and Lemma 2. 

LEMMA 1: The maximum profit that can be achieved given a price p and optimizing over R in 

CCSC is a concave function of the price p. 

Proof: Let f(x,y) be a concave function of x and y defined over C  a convex non-empty set.  

Let the function g(x) be the maximum of f(x,y) given x and maximizing y over C.  

),(sup)( yxfxg
cy

  (157) 

Let ε > 0.  Then there are y1 and y2  C such that f(xi,yi)≥ g(xi)-ε for i = 1, 2.  
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 (158) 

                                     

Since the above holds for any value of ε > 0, we have that 

)()1()())1(( 2121 xgxgxxg    (159) 

 

Hence, g(x) is a concave function. Applying the above lemma, the maximum of total SC 

profit given a price p and optimizing over R is a concave function of p. A similar proof for 

the case of minimization and convex function is given in Boyd (2004).   
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LEMMA 2: The total SC profit in MDSC and SPDSCs is equal to the maximum total SC 

profits that can be obtained given the optimal prices in the respective SC’s. 

Proof:  Suppose we are maximizing the total SC profits with respect to R given a fixed price 

pc. Then the first order conditions with respect to R is as follows 

Coordinated SC (total SC profit maximization): 

0)(
)(




c
c RI

p




 (160) 

First order conditions in MDSC and SPDSC obtained by equating (8) and (119) to zero can 

be simplified as shown in (161) and  (162)  
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 (161) 
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sp
sp
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 (162) 

Comparing (160) and (161), we observe that mR  maximizes the total SC profits given pm. 

Similarly comparing (160) and (162), spR  maximizes the total SC profits given the psp.  

From Lemma 1, the total SC profits given a price p and optimizing over R (i.e., the objective 

of CCSC) is a concave function of price p. The maximum of this function is achieved at price

cp . Hence, the total SC profit decreases with p when p≥pc. Given 
***

mspc ppp  and 

considering Lemma 2, the total SC profit in SPDSC is greater than the total SC profit in 

MDSC. Hence,
total
m

total
spc   .   Considering that SPDSC also leads to a lower price to 

the consumers, the total surplus of SPDSC is greater than the total surplus of MDSC. 
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6.4 Numerical Example with Product Life as a Parameter 

The parameters of this numerical example are the same as Section  3.52.  The specific 

parameter values  are k = 1 000 000, Cm = 23737, β=8 000 000 and γ = 2 500 000.  We first 

varied ∆ between 2000 and 7000 with a fixed α of 12 113. Figure 27 and  

Figure 27 and Figure 28 show the variation of R and p with the cost savings per 

remanufactured product ∆. We observe that the R and p in MDSC and SPDSC are very quite 

similar. Figure 28 Variation of p with ∆ under MDSC, CCSC and SPDSC  

 

 Figure 29shows the variation of δ with ∆ in various SC. We can observe that the δ for 

SPDSC is 33%, same as for the forward supply chain shown in Appendix B.  When ∆ is high 

the combined effect of reduced price and increased remanufacturing are leading to higher 

profits SPDSC compared to MDSC.  

 
Figure 27 Variation of R with ∆ under MDSC, CCSC and SPDSC  
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Figure 28 Variation of p with ∆ under MDSC, CCSC and SPDSC  

 

 
 

Figure 29 Variation of the Percentage Gain in Profit by Coordinating MDSC and 

SPDSC with ∆. 

 

6.5 Numerical Example with Product Life as a Variable 

Being the follower, the manufacturer accepts the service provider’s margin and then 

determines the wholesale price p, remanufacturability R and the product life α that maximize 

his profits.  The service provider considers the manufacturer’s reaction w (g) and chooses the 
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margin that optimizes her margin considering w (g). The manufacturer’s profit maximization 

problem is formulated by (163). 

𝑀𝑎𝑥
𝑤,𝑅,𝛼

 𝜋𝑚 =
(𝛽 −  𝑔 +

𝑤
𝛼 𝛾)

𝛼
 𝑤 − 𝐶𝑚(𝛼) + 𝑅∆ − 𝐼(𝑅) (163) 

 

Equation (164) and (164) are sufficient conditions for the quasiconcavity of the 

manufacturers profit function 𝜋𝑚  and the existence of the Stackelberg equilibrium. 

∆2(𝛽 − 𝑔𝛾) − 𝛾∆2𝐶𝑚
′ (𝛼 ) − 𝛼 𝐶𝑚 ′′ 𝛼

∗  4𝛼∗2𝐼′′  𝑅  − 𝛾∆2 ) < 0 (165) 

 

2𝛼2𝐼′′  𝑅  > 𝛾∆2 (166) 

 

In case of SPDSC with a variable α analytic conditions for quasiconcavity of the 

manufacturer’s objective was hard to interpret.  Hence, we will observe how SPDSC solution 

differs from other supply chains in a numerical example. The parameters of this example are 

the same as in Section 4.5. The specific values utilized are as follows: k = 1000 000, β=800 

0000, γ = 2 500 000, Cm0 =12 000, s = .00008. The cost savings per remanufactured product 

was varied between 2000 and 6500. 

In this numerical example, we obtained SPDSC equilibrium by solving the first order 

conditions. Given the specific parameter values, we obtained only one critical point where 

the first order conditions were met where α>0 and1 >R>0. The uniqueness of the equilibrium 

was confirmed by testing whether the service providers profit is concave at the critical point. 
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Figures 30, 31 and 32 show the variation of R, p, and α in various supply chain. We can 

observe that SPDSC solution is quite similar to MDSC solution. 

 

Figure 30 Variation of the R with ∆ in MDSC, CCSC, and SPDSC when 𝜶 is Variable 

 

 
 

Figure 31 Variation of the Price p with ∆ in MDSC, CCSC, and SPDSC when 𝜶 is 
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Figure 32 Variation of the α with ∆ in MDSC, CCSC, and SPDSC when 𝜶 is Variable 

 

 

Figure 33 Variation of the Percent Profit Gain with Coordination δ with ∆ 
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7. Concluding Remarks 

The purpose of this study was to model and analyze the economic relationships among the 

level of remanufacturing, product life, and economic consequences under the framework of a   

manufacturer/remanufacturer and a service provider who utilizes the manufacturer’s product 

to provide service to her customers.  In addition, the study had the following research 

objectives.  

 1)  To derive the relationships between the remanufacturability and product life in 

the context of a manufacturer-service provider supply chain. 

2)  To investigate how supply chain coordination between the manufacturer and 

service provider impacts the remanufacturability, product life and prices. 

3)  To analyze the impact of an environmental legislation that penalizes disposal of 

products with respect to the level of remanufacturing and product life. 

To achieve these objectives,  

In Chapter 3, we formulated MDSC when product life is a parameter as a Stackelberg game, 

performed comparative statics of the equilibrium and compared MDSC equilibrium with the 

benchmark CCSC solution. Assuming linear demand and a general investment function, we 

found that the lack of coordination in MDSC is resulting in a higher price per unit service 

and lower investment in remanufacturability compared to CCSC.  Our results are a 

generalization of similar results obtained by other articles to the case of service supply chain 

and a more general class of investment functions. 



www.manaraa.com

100 

 

In Chapter 4, we formulated MDSC with a variable product life as a Stackelberg game, 

performed comparative statics analysis of the equilibrium and compared MDSC equilibrium 

with the benchmark CCSC solution. Our results showed that several conditions resulting in a 

higher remanufacturability such as increased cost saving per remanufactured product and 

reduced slope of the demand function also lead to lower product life. The managerial 

implication of this result is that manufacturers/remanufacturers should consider a high 

remanufacturability low product life strategy as a business option under such conditions. 

While CCSC solution has a higher remanufacturability compared to MDSC equilibrium, it 

has a lower product life. Hence, the decentralized MDSC might be preferred from the 

environmental stand point if a longer product life is desired. 

In Chapter 5, we analyzed how an environmental fee imposed upon each disposed product 

influences MDSC equilibrium when product life is constant. We found that under some 

conditions when the marginal demand is sufficiently high, the environmental fee can counter 

intuitively result in reduced investment in remanufacturability and a higher price.  Given 

variable product life, we observed from a numerical example that increase in the 

environmental fee can simultaneously result in increased product life as well as 

remanufacturability in the MDSC. 

In Chapter 6, we formulated SPDSC as a benchmark for the scenario where the service 

provider is the dominant supply chain member. With product life as a parameter, we found 

that SPDSC is superior to MDSC with respect to total supply chain profits, 

remanufacturability and the price per unit service. With product life as a variable, we 
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observed that SPDSC has a higher remanufacturability and a lower product life compared to 

MDSC. 

Thus far, we have summarized our investigational achievements. We will now discuss items 

for future study. 

The gaming process assumed in SPDSC is formulated in terms of margins and is less 

intuitive than MDSC.  One of the concerns is whether the manufacturer’s technology choices 

are influenced by the service provider pricing decisions. In case of a traditional supply chain, 

anecdotal evidence suggests that powerful retailers such as Walmart can bring about a greater 

demand for products and lead to investments by manufacturers in production cost saving 

technology (e.g, reusable packaging). Validating the above results with empirical research on 

the gaming process in SPDSC is an interesting area for further study. 

We assumed a single period model in which the decisions are all made at the start of the 

period. The length of the period was defined as the operation period of the investment in 

remanufacturability.  In a dynamic model where the prices and production quantities can be 

vary across periods, the investment in remanufacturability and product life can both influence 

the future cash flows and can be impacted by the discount factor.  Investigating, whether the 

relationship between product life and remanufacturability identified in this research are valid 

under a dynamic setting is an interesting area for further research. 

We modeled fixed cost investment in remanufacturability and product life as a function of 

manufacturing cost. In reality, the remanufacturability may also be increased in some cases 

by utilizing better quality long life components as discussed by [34].  Similarly product life 
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may be improved via a more robust design.  Investigating the impact of these alternate 

models is another important area for further study.   

We assumed a linear demand to characterize the key supply chain phenomena in a tractable 

manner.  Given the linear demand, the sensitivity analysis of the equilibrium was presented 

in terms of the parameters of the linear demand.  Extending the model to other demand 

functions such as the constant elasticity demand and analyzing how the demand elasticity 

impacts the product life and remanufacturability is an important avenue for further study. 

Finally, we assumed that the manufacturer and service provider have a monopoly in the 

product and services offered.  Investigating the impact of competition in alternative supply 

chain configurations with multiple manufacturers and service provider’s [11, 29, 38]  is an 

interesting area for further research.   

These issues under the discussion will provide interesting and relevant future studies. We 

think that the models and the analysis presented in this chapter will serve as a strong basis for 

such extensions. 
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Appendix A: Summary of Notation 

𝜋𝑚
𝑚  is the manufacturer’s profit in MDSC (dollars). 

𝜋𝑠𝑝
𝑚  is the service provider’s profit in MDSC(dollars). 

𝜋𝑚
𝑠𝑝

 is the manufacturer’s profit in the service provider driven supply chain (dollars). 

𝜋𝑠𝑝
𝑠𝑝

 is the service provider’s profit in the service provider driven supply chain(dollars). 

w   is the wholesale price paid by the service provider to the manufacturer for each product 

(dollars/product) 

   the product life is the number of units of service provided by a product from its 

manufacturer/ remanufacture to when it is collected as a used product for possible 

remanufacturing (units of service/ product). 

Cm  is the manufacturing cost per product (dollars/product). 

Cr  is the remanufacturing cost per product (dollars/product). 

  is the cost saving per remanufactured product (dollars/product). i.e. ∆= 𝐶𝑚−𝐶𝑅   

R  the remanufacturability is the fraction of used products that are remanufactured. 

I(R) is the investment required to achieve a level of remanufacturability of R (dollars). 

p  is the price per unit service charged by the service provider to the customers (dollars/ unit 

service) 
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β  is the maximum demand parameter of the linear demand function (units service). β  is 

the demand when p is zero. 

γ  is the marginal demand parameter of the linear demand function ((unit service)
2
/dollar). γ  

is the decrease in demand when the price increases by a dollar. 
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Appendix B: The Manufacturer Driven Forward Supply Chain without 

Remanufacturing  

This supply chain is MDSC where remanufacturing is not possible. Several articles in the 

literature have addressed the forward supply chain [13].   The calculation of the equilibrium 

values for the case of the linear demand is straightforward.  We provide expressions for the 

equilibrium values that are useful as benchmarks for comparing the results with 

remanufacturing. 

The equilibrium wholesale price in the wmf  is  

𝑤𝑚𝑓 =
𝛼𝛽 + 𝐶𝑚𝛾

2𝛾
 

(B.1) 

The equilibrium price in the pmf  is  

𝑝𝑚𝑓 =
3𝛼𝛽 + 𝐶𝑚𝛾

4𝛼𝛾
 

(B.2) 

The equilibrium demand is  

𝛽 − 𝛾𝑝𝑚𝑓 =
𝛼𝛽 + 𝐶𝑚𝛾

4𝛼
 

(B.3) 

𝜋𝑚𝑓
∗ =

 𝛼𝛽 − 𝐶𝑚𝛾 
2

8𝛼2𝛾
 

(B.4) 

   

𝜋𝑠𝑝𝑓
∗ =

 𝛼𝛽 − 𝐶𝑚𝛾 
2

16𝛼2𝛾
 

(B.5) 
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